Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 11(2): e3888, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33732777

RESUMEN

ATP13A2/PARK9 is a late endo-/lysosomal P5B transport ATPase that is associated with several neurodegenerative disorders. We recently characterized ATP13A2 as a lysosomal polyamine exporter, which sheds light on the molecular identity of the unknown mammalian polyamine transport system. Here, we describe step by step a protocol to measure radiolabeled polyamine transport in reconstituted vesicles from yeast cells overexpressing human ATP13A2. This protocol was developed as part of our recent publication (van Veen et al., 2020 ) and will be useful for characterizing the transport function of other putative polyamine transporters, such as isoforms of the P5B transport ATPases.

2.
Cell Death Discov ; 4: 101, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30416758

RESUMEN

The anti-apoptotic protein Bcl-2 is upregulated in several cancers, including diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL). In a subset of these cancer cells, Bcl-2 blocks Ca2+-mediated apoptosis by suppressing the function of inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) located at the endoplasmic reticulum (ER). A peptide tool, called Bcl-2/IP3 receptor disruptor-2 (BIRD-2), was developed to disrupt Bcl-2/IP3R complexes, triggering pro-apoptotic Ca2+ signals and killing Bcl-2-dependent cancer cells. In DLBCL cells, BIRD-2 sensitivity depended on the expression level of IP3R2 channels and constitutive IP3 signaling downstream of the B-cell receptor. However, other cellular pathways probably also contribute to BIRD-2-provoked cell death. Here, we examined whether BIRD-2-induced apoptosis depended on extracellular Ca2+ and more particularly on store-operated Ca2+ entry (SOCE), a Ca2+-influx pathway activated upon ER-store depletion. Excitingly, DPB162-AE, a SOCE inhibitor, suppressed BIRD-2-induced cell death in DLBCL cells. However, DPB162-AE not only inhibits SOCE but also depletes the ER Ca2+ store. Treatment of the cells with YM-58483 and GSK-7975A, two selective SOCE inhibitors, did not protect against BIRD-2-induced apoptosis. Similar data were obtained by knocking down STIM1 using small interfering RNA. Yet, extracellular Ca2+ contributed to BIRD-2 sensitivity in DLBCL, since the extracellular Ca2+ buffer ethylene glycol tetraacetic acid (EGTA) blunted BIRD-2-triggered apoptosis. The protective effects observed with DPB162-AE are likely due to ER Ca2+-store depletion, since a similar protective effect could be obtained using the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. Thus, both the ER Ca2+-store content and extracellular Ca2+, but not SOCE, are critical factors underlying BIRD-2-provoked cell death.

3.
Cell Calcium ; 62: 60-70, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28196740

RESUMEN

Store-operated Ca2+ entry (SOCE), an important Ca2+ signaling pathway in non-excitable cells, regulates a variety of cellular functions. To study its physiological role, pharmacological tools, like 2-aminoethyl diphenylborinate (2-APB), are used to impact SOCE. 2-APB is one of the best characterized SOCE inhibitors. However, 2-APB also activates SOCE at lower concentrations, while it inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and other ion channels, like TRP channels. Because of this, 2-APB analogues that inhibit SOCE more potently and more selectively compared to 2-APB have been developed. The recently developed DPB162-AE is such a structural diphenylborinate isomer of 2-APB that selectively inhibits SOCE currents by blocking the functional coupling between STIM1 and Orai1. However, we observed an adverse effect of DPB162-AE on the ER Ca2+-store content at concentrations required for complete SOCE inhibition. DPB162-AE increased the cytosolic Ca2+ levels by reducing the ER Ca2+ store in cell lines as well as in primary cells. DPB162-AE did not affect SERCA activity, but provoked a Ca2+ leak from the ER, even after application of the SERCA inhibitor thapsigargin. IP3Rs partly contributed to the DPB162-AE-induced Ca2+ leak, since pharmacologically and genetically inhibiting IP3R function reduced, but not completely blocked, the effects of DPB162-AE on the ER store content. Our results indicate that, in some conditions, the SOCE inhibitor DPB162-AE can reduce the ER Ca2+-store content by inducing a Ca2+-leak pathway at concentrations needed for adequate SOCE inhibition.


Asunto(s)
Compuestos de Boro/farmacología , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Células Tumorales Cultivadas
4.
J Biol Chem ; 287(24): 19876-85, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22528494

RESUMEN

The housekeeping sarco(endo)plasmic reticulum Ca(2+) ATPase SERCA2b transports Ca(2+) across the endoplasmic reticulum membrane maintaining a vital Ca(2+) gradient. Compared with the muscle-specific isoforms SERCA2a and SERCA1a, SERCA2b houses an 11th transmembrane segment (TM11) and a short luminal extension (LE) at its C terminus (2b-tail). The 2b-tail imposes a 2-fold higher apparent Ca(2+) affinity and lower V(max). Previously, we assumed that LE is the sole functional region of the 2b-tail and that TM11 is a passive element providing an additional membrane passage. However, here we show that peptides corresponding to the TM11 region specifically modulate the activity of the homologous SERCA1a in co-reconstituted proteoliposomes and mimic the 2b-tail effect (i.e. lower V(max) and higher Ca(2+) affinity). Using truncated 2b-tail variants we document that TM11 regulates SERCA1a independently from LE, confirming that TM11 is a second, previously unrecognized functional region of the 2b-tail. A phylogenetic analysis further indicates that TM11 is the oldest and most conserved feature of the 2b-tail, found in the SERCA pump of all Bilateria, whereas LE is only present in Nematoda and vertebrates. Considering remarkable similarities with the Na(+),K(+)-ATPase α-ß interaction, we now propose a model for interaction of TM11 with TM7 and TM10 in the anchoring subdomain of the Ca(2+) pump. This model involves a TM11-induced helix bending of TM7. In conclusion, more than just a passive structural feature, TM11 acts as a genuine regulator of Ca(2+) transport through interaction with the pump.


Asunto(s)
Retículo Endoplásmico/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Humanos , Nematodos/enzimología , Nematodos/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasa Intercambiadora de Sodio-Potasio/genética
5.
Cell Calcium ; 42(3): 281-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17306367

RESUMEN

A reduced activity of the sarcoplasmic reticulum Ca2+ pump SERCA2a is a hallmark of cardiac dysfunction in heart failure. In SERCA2b/b mice, the normal SERCA2a isoform is replaced by SERCA2b, displaying a higher Ca2+ affinity. This elicited decreased cardiac SERCA2 expression and cardiac hypertrophy. Here, the interplay was studied between the increased Ca2+ affinity and a reduced expression of the pump and its role in the cardiac remodeling was investigated. First, SERCA2b/b mice were crossed with SERCA2b transgenes to boost cardiac SERCA2b expression. However, the enforced expression of SERCA2b was spontaneously countered by an increased inhibition by phospholamban (PLB), reducing the pump's Ca2+ affinity. Moreover, the higher SERCA2 content did not prevent hypertrophy. Second, we studied heterozygous SERCA2b/WT mice, which also express lower SERCA2 levels compared to wild-type. Hypertrophy was not observed. In heterozygotes, SERCA2b expression was specifically suppressed, explaining the reduced SERCA2 content. The SERCA2b/WT model strikingly differs from the homozygote models because SERCA2a (not SERCA2b) is the major isoform and because the inhibition of the pump by PLB is decreased instead of being increased. Thus, a tight correlation exists between the SERCA2 levels and Ca2+ affinity (controlled by PLB). This compensatory response may be important to prevent cardiac remodeling.


Asunto(s)
Calcio/metabolismo , Miocardio/metabolismo , Isoformas de Proteínas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Transgenes , Remodelación Ventricular
6.
Biochem J ; 389(Pt 1): 151-9, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15801907

RESUMEN

The widely held view that SLN (sarcolipin) would be the natural inhibitor of SERCA1 (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase 1), and PLB (phospholamban) its counterpart for SERCA2 inhibition is oversimplified and partially wrong. The expression of SLN and PLB mRNA and protein relative to SERCA1 or SERCA2 was assessed in ventricle, atrium, soleus and EDL (extensor digitorum longus) of mouse, rat, rabbit and pig. SLN protein levels were quantified by means of Western blotting using what appears to be the first successfully generated antibody directed against SLN. Our data confirm the co-expression of PLB and SERCA2a in cardiac muscle and the very low levels (in pig and rabbit) or the absence (in rat and mouse) of PLB protein in the slow skeletal muscle. In larger animals, the SLN mRNA and protein expression in the soleus and EDL correlates with SERCA1a expression, but, in rodents, SLN mRNA and protein show the highest abundance in the atria, which are devoid of SERCA1. In the rodent atria, SLN could therefore potentially interact with PLB and SERCA2a. No SLN was found in the ventricles of the different species studied, and there was no compensatory SLN up-regulation for the loss of PLB in PLB(-/-) mouse. In addition, we found that SLN expression was down-regulated at the mRNA and protein level in the atria of hypertrophic hearts of SERCA2(b/b) mice. These data suggest that superinhibition of SERCA by PLB-SLN complexes could occur in the atria of the smaller rodents, but not in those of larger animals.


Asunto(s)
Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Proteolípidos/biosíntesis , Proteolípidos/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/química , Proteolípidos/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Ratas , Ratas Wistar , Estándares de Referencia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Especificidad de la Especie , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...