Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Zoo Biol ; 43(2): 183-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234126

RESUMEN

The ability of females to store sperm for extended periods in their reproductive tracts (termed long-term sperm storage, LTSS) has been reported across a diversity of vertebrate taxa. The evolutionary, ecological, and physiological significance of LTSS is wide-ranging and includes the ability to produce offspring when mates may be temporally scarce by way of decoupling copulation from ovulation, inbreeding avoidance, and the generation and maintenance of genetic diversity in progeny. Among vertebrate lineages, nonavian reptiles exhibit a remarkable capacity for LTSS, with the production of viable offspring reported after periods exceeding 6 years since prior contact with a potential mate. Given that female reptiles are able to store viable sperm for prolonged periods, it is important to disentangle LTSS from that of facultative parthenogenesis (FP), a reproductive trait which appears widespread among all reptile lineages. The implications of this distinction are particularly important in the context of the development and management of captive breeding programs. To accurately determine between the two reproductive strategies, genomic screening is highly recommended. Following a period of isolation for 13 months from a potential male mate, a female Himalayan Mountain Pitviper (Ovophis monticola) produced a clutch of three male offspring. Here, through genome-scale analyses of the female and her progeny, we document the first record of LTSS in this genus and exclude FP as the alternative hypothesis.


Asunto(s)
Animales de Zoológico , Semen , Masculino , Animales , Femenino , Himalayas , Reproducción/fisiología , Espermatozoides
2.
Ecol Evol ; 13(11): e10683, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020675

RESUMEN

Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co-evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non-hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared to C. scutulatus, C. viridis was significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be more viridis-like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomys spp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified.

3.
Ecol Evol ; 13(8): e10339, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554395

RESUMEN

Many animal species exist in fission-fusion societies, where the size and composition of conspecific groups change spatially and temporally. To help investigate such phenomena, social network analysis (SNA) has emerged as a powerful conceptual and analytical framework for assessing patterns of interconnectedness and quantifying group-level interactions. We leveraged behavioral observations via radiotelemetry and genotypic data from a long-term (>10 years) study on the pitviper Crotalus atrox (western diamondback rattlesnake) and used SNA to quantify the first robust demonstration of social network structures for any free-living snake. Group-level interactions among adults in this population resulted in structurally modular networks (i.e., distinct clusters of interacting individuals) for fidelis use of communal winter dens (denning network), mating behaviors (pairing network), and offspring production (parentage network). Although the structure of each network was similar, the size and composition of groups varied among them. Specifically, adults associated with moderately sized social groups at winter dens but often engaged in reproductive behaviors-both at and away from dens-with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population-interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.

4.
Biol Lett ; 19(6): 20230129, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282490

RESUMEN

Over the past two decades, there has been an astounding growth in the documentation of vertebrate facultative parthenogenesis (FP). This unusual reproductive mode has been documented in birds, non-avian reptiles-specifically lizards and snakes-and elasmobranch fishes. Part of this growth among vertebrate taxa is attributable to awareness of the phenomenon itself and advances in molecular genetics/genomics and bioinformatics, and as such our understanding has developed considerably. Nonetheless, questions remain as to its occurrence outside of these vertebrate lineages, most notably in Chelonia (turtles) and Crocodylia (crocodiles, alligators and gharials). The latter group is particularly interesting because unlike all previously documented cases of FP in vertebrates, crocodilians lack sex chromosomes and sex determination is controlled by temperature. Here, using whole-genome sequencing data, we provide, to our knowledge, the first evidence of FP in a crocodilian, the American crocodile, Crocodylus acutus. The data support terminal fusion automixis as the reproductive mechanism; a finding which suggests a common evolutionary origin of FP across reptiles, crocodilians and birds. With FP now documented in the two main branches of extant archosaurs, this discovery offers tantalizing insights into the possible reproductive capabilities of the extinct archosaurian relatives of crocodilians and birds, notably members of Pterosauria and Dinosauria.


Asunto(s)
Caimanes y Cocodrilos , Dinosaurios , Tortugas , Animales , Caimanes y Cocodrilos/genética , Evolución Biológica , Genómica , Aves/genética , Partenogénesis
5.
R Soc Open Sci ; 10(5): 221466, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181791

RESUMEN

Historically, the role of aggression in the social lives of animals overwhelmingly focused on males. In recent years, however, female-female aggression in vertebrates, particularly lizards, has received increasing attention. This growing body of literature shows both similarities and differences to aggressive behaviours between males. Here, we document female-female aggression in captive Gila monsters (Heloderma suspectum). Based on four unique dyadic trials (eight adult female subjects), we developed a qualitative ethogram. Unexpected and most intriguing were the prevalence and intensity of aggressive acts that included brief and sustained biting, envenomation, and lateral rotation (i.e. rolling of body while holding onto opponent with closed jaws). Given specific behavioural acts (i.e. biting) and the results of bite-force experiments, we postulate that osteoderms (bony deposits in the skin) offer some degree of protection and reduce the likelihood of serious injury during female-female fights. Male-male contests in H. suspectum, in contrast, are more ritualized, and biting is rarely reported. Female-female aggression in other lizards has a role in territoriality, courtship tactics, and nest and offspring guarding. Future behavioural research on aggression in female Gila monsters is warranted to test these and other hypotheses in the laboratory and field.

6.
R Soc Open Sci ; 9(5): 220218, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35582659

RESUMEN

With the advent of powerful imaging instruments, the prenatal behaviour of vertebrates has been discovered to be far more complex than previously believed, especially concerning humans, other mammals and birds. Surprisingly, the fetal behaviour of squamate reptiles (lizards, snakes and amphisbaenians), a group of over 11 000 extant species, are largely understudied. Using ultrasonography, 18 late-term pregnant copperhead snakes (Agkistrodon contortrix) from a single population were inspected for fecundity (number of fetuses). Unexpectedly, during the ultrasound procedure that involved 97 fetuses, we observed sinusoidal tail movements in 11 individuals from eight different copperhead mothers. These movements were indistinguishable from caudal luring, a mimetic ambush predatory strategy which is exhibited by newborn copperheads and other snakes. Caudal luring is initiated shortly after birth and is employed to attract susceptible vertebrate prey. Using the same ultrasound equipment and methods, we tested for this behaviour in two species of rattlesnakes (genus Crotalus) not known to caudal lure and none of the late-term fetuses showed any type of tail movements. Prenatal movements in humans and other vertebrates are known to be important for musculoskeletal and sensorimotor development. The fetal behaviours we describe for copperheads, and possibly other snakes, may be similarly important and influence early survival and subsequent fitness.

7.
PLoS One ; 16(6): e0252049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086677

RESUMEN

Females of many vertebrate species have the capacity to store sperm within their reproductive tracts for prolonged periods of time. Termed long-term sperm storage, this phenomenon has many important physiological, ecological, and evolutionary implications, particularly to the study of mating systems, including male reproductive success and post-copulatory sexual selection. Reptiles appear particularly predisposed to long-term sperm storage, with records in most major lineages, with a strong emphasis on turtles and squamates (lizards, snakes, but not the amphisbaenians). Because facultative parthenogenesis is a competing hypothesis to explain the production of offspring after prolonged separation from males, the identification of paternal alleles through genetic analysis is essential. However, few studies in snakes have undertaken this. Here, we report on a wild-collected female Western Diamond-backed Rattlesnake, Crotalus atrox, maintained in isolation from the time of capture in September 1999, that produced two healthy litters approximately one and six years post capture. Genetic analysis of the 2005 litter, identified paternal contribution in all offspring, thus rejecting facultative parthenogenesis. We conclude that the duration of long-term sperm storage was approximately 6 years (71 months), making this the longest period over which a female vertebrate has been shown to store sperm that resulted in the production of healthy offspring.


Asunto(s)
Espermatozoides/fisiología , Vertebrados/fisiología , Animales , Evolución Biológica , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite/fisiología , Reproducción/fisiología , Conducta Sexual Animal/fisiología
8.
Sci Rep ; 11(1): 7271, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790309

RESUMEN

Facultative parthenogenesis (FP) is widespread in the animal kingdom. In vertebrates it was first described in poultry nearly 70 years ago, and since then reports involving other taxa have increased considerably. In the last two decades, numerous reports of FP have emerged in elasmobranch fishes and squamate reptiles (lizards and snakes), including documentation in wild populations of both clades. When considered in concert with recent evidence of reproductive competence, the accumulating data suggest that the significance of FP in vertebrate evolution has been largely underestimated. Several fundamental questions regarding developmental mechanisms, nonetheless, remain unanswered. Specifically, what is the type of automixis that underlies the production of progeny and how does this impact the genomic diversity of the resulting parthenogens? Here, we addressed these questions through the application of next-generation sequencing to investigate a suspected case of parthenogenesis in a king cobra (Ophiophagus hannah). Our results provide the first evidence of FP in this species, and provide novel evidence that rejects gametic duplication and supports terminal fusion as a mechanism underlying parthenogenesis in snakes. Moreover, we precisely estimated heterozygosity in parthenogenetic offspring and found appreciable retained genetic diversity that suggests that FP in vertebrates has underappreciated evolutionary significance.


Asunto(s)
Evolución Molecular , Repeticiones de Microsatélite , Ophiophagus hannah/genética , Partenogénesis , Animales , Estudio de Asociación del Genoma Completo
9.
R Soc Open Sci ; 7(10): 201261, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33204479

RESUMEN

Decades of research on sexual selection have demonstrated that 'conventional' Darwinian sex roles are common in species with anisogamous gametes, with those species often exhibiting male-biased sexual selection. Yet, mating system characteristics such as long-term sperm storage and polyandry have the capacity to disrupt this pattern. Here, these ideas were explored by quantifying sexual selection metrics for the western diamond-backed rattlesnake (Crotalus atrox). A significant standardized sexual selection gradient was not found for males (ß SS = 0.588, p = 0.199) or females (ß SS = 0.151, p = 0.664), and opportunities for sexual selection (Is ) and selection (I) did not differ between males (Is = 0.069, I = 0.360) and females (Is = 0.284, I = 0.424; both p > 0.05). Furthermore, the sexes did not differ in the maximum intensity of precopulatory sexual selection (males: s' max = 0.155, females: s' max = 0.080; p > 0.05). Finally, there was no evidence that male snout-vent length, a trait associated with mating advantage, is a target of sexual selection (p > 0.05). These results suggest a lack of male-biased sexual selection in this population. Mating system characteristics that could erode male-biased sexual selection, despite the presence of conventional Darwinian sex roles, are discussed.

10.
ACS Omega ; 4(25): 21141-21147, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867507

RESUMEN

During storms in the southwestern United States, several rattlesnake species have been observed drinking rain droplets collected on their dorsal scales. This process often includes coiling and flattening of the snake's body, presumably to enhance water collection. Here, we explored this rain-harvesting behavior of the Western Diamond-backed Rattlesnake (Crotalus atrox) from the perspective of surface science. Specifically, we compared surface wettability and texture, as well as droplet impact and evaporation dynamics on the rattlesnake epidermis with those of two unrelated (control) sympatric snake species (Desert Kingsnake, Lampropeltis splendida, and Sonoran Gopher Snake, Pituophis catenifer). These two control species are not known to show rain-harvesting behavior. Our results show that the dorsal scales of the rattlesnake aid in water collection by providing a highly sticky, hydrophobic surface, which pins the impacting water droplets. We show that this high pinning characteristic stems from surface nanotexture made of shallow, labyrinth-like channels.

11.
Sci Rep ; 9(1): 15499, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664072

RESUMEN

Human-induced global climate change is exerting increasingly strong selective pressures on a myriad of fitness traits that affect organisms. These traits, in turn, are influenced by a variety of environmental parameters such as temperature and precipitation, particularly in ectothermic taxa such as amphibians and reptiles. Over the past several decades, severe and prolonged episodes of drought are becoming commonplace throughout North America. Documentation of responses to this environmental crisis, however, is often incomplete, particularly in cryptic species. Here, we investigated reproduction in a population of pitviper snakes (copperhead, Agkistrodon contortrix), a live-bearing capital breeder. This population experienced a severe drought from 2012 through 2016. We tested whether declines in number of progeny were linked to this drought. Decline in total number offspring was significant, but offspring length and mass were unaffected. Reproductive output was positively impacted by precipitation and negatively impacted by high temperatures. We hypothesized that severe declines of prey species (e.g., cicada, amphibians, and small mammals) reduced energy acquisition during drought, negatively impacting reproductive output of the snakes. Support for this view was found using the periodical cicada (Magicicada spp.) as a proxy for prey availability. Various climate simulations, including our own qualitative analysis, predict that drought events will continue unabated throughout the geographic distribution of copperheads which suggests that long-term monitoring of populations are needed to better understand geographic variation in drought resilience and cascading impacts of drought phenomena on ecosystem function.


Asunto(s)
Agkistrodon/fisiología , Sequías , Fertilidad , Reproducción , Animales , Cambio Climático , Ecosistema , Femenino , Masculino , Viviparidad de Animales no Mamíferos
12.
Proc Biol Sci ; 285(1872)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29436500

RESUMEN

Seed dispersal is a key evolutionary process and a central theme in the population ecology of terrestrial plants. The primary producers of most land-based ecosystems are propagated by and maintained through various mechanisms of seed dispersal that involve both abiotic and biotic modes of transportation. By far the most common biotic seed transport mechanism is zoochory, whereby seeds, or fruits containing them, are dispersed through the activities of animals. Rodents are one group of mammals that commonly prey on seeds (granivores) and play a critical, often destructive, role in primary dispersal and the dynamics of plant communities. In North America, geomyid, heteromyid and some sciurid rodents have specialized cheek pouches for transporting seeds from plant source to larder, where they are often eliminated from the pool of plant propagules by consumption. These seed-laden rodents are commonly consumed by snakes as they forage, but unlike raptors, coyotes, bobcats, and other endothermic predators which eat rodents and are known or implicated to be secondary seed dispersers, the role of snakes in seed dispersal remains unexplored. Here, using museum-preserved specimens, we show that in nature three desert-dwelling rattlesnake species consumed heteromyids with seeds in their cheek pouches. By examining the entire gut we discovered, furthermore, that secondarily ingested seeds can germinate in rattlesnake colons. In terms of secondary dispersal, rattlesnakes are best described as diplochorous. Because seed rescue and secondary dispersal in snakes has yet to be investigated, and because numerous other snake species consume granivorous and frugivorous birds and mammals, our observations offer direction for further empirical studies of this unusual but potentially important channel for seed dispersal.


Asunto(s)
Crotalus/fisiología , Ingestión de Alimentos , Germinación , Dispersión de Semillas , Semillas/crecimiento & desarrollo , Animales , Arizona , California , Conducta Alimentaria , Semillas/fisiología
13.
Curr Biol ; 27(14): 2148-2153.e4, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28690112

RESUMEN

For over 50 years, biologists have accepted that all extant snakes share the same ZW sex chromosomes derived from a common ancestor [1-3], with different species exhibiting sex chromosomes at varying stages of differentiation. Accordingly, snakes have been a well-studied model for sex chromosome evolution in animals [1, 4]. A review of the literature, however, reveals no compelling support that boas and pythons possess ZW sex chromosomes [2, 5]. Furthermore, phylogenetic patterns of facultative parthenogenesis in snakes and a sex-linked color mutation in the ball python (Python regius) are best explained by boas and pythons possessing an XY sex chromosome system [6, 7]. Here we demonstrate that a boa (Boa imperator) and python (Python bivittatus) indeed possess XY sex chromosomes, based on the discovery of male-specific genetic markers in both species. We use these markers, along with transcriptomic and genomic data, to identify distinct sex chromosomes in boas and pythons, demonstrating that XY systems evolved independently in each lineage. This discovery highlights the dynamic evolution of vertebrate sex chromosomes and further enhances the value of snakes as a model for studying sex chromosome evolution.


Asunto(s)
Boidae/genética , Evolución Molecular , Cromosomas Sexuales/genética , Animales , Femenino , Marcadores Genéticos/genética , Masculino
14.
PLoS One ; 9(3): e90616, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24598810

RESUMEN

Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa.


Asunto(s)
Crotalus/genética , Distribución Animal , Animales , Tamaño Corporal , Crotalus/anatomía & histología , Crotalus/fisiología , Femenino , Masculino , Repeticiones de Microsatélite , Reproducción , Caracteres Sexuales , Conducta Sexual Animal
15.
Biol Lett ; 8(6): 983-5, 2012 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22977071

RESUMEN

Facultative parthenogenesis (FP)-asexual reproduction by bisexual species-has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes-the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted.


Asunto(s)
Agkistrodon/fisiología , Evolución Biológica , Partenogénesis/fisiología , Animales , Femenino , Frecuencia de los Genes , Genotipo , Repeticiones de Microsatélite/genética , América del Norte
16.
Zoolog Sci ; 29(4): 273-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22468838

RESUMEN

We investigated levels of plasma progesterone (P4), 17ß-estradiol (E2), testosterone (T), and corticosterone (CORT) during gestation and post-birth periods in wild-collected female copperhead snakes (Viperidae; Agkistrodon contortrix). We also sought to determine whether CORT levels at (or near) birth dramatically increase and were correlated with duration of labor and litter size. Specifically, pregnant subjects (N = 14) were collected during early- to mid-gestation, held in the laboratory, and repeatedly bled to obtain plasma for steroid analyses. Progesterone showed significant changes during gestation, with the highest levels at the onset of sampling (circa 50 days prior to birth); P4 progressively declined up to parturition, and basal levels were observed thereafter. At the onset of sampling, E2 was at peak levels and fell sharply at circa 30 days prior to birth, a trend observed throughout the post-birth sampling period. Throughout the entire sampling period, T was undetectable. Although CORT showed no significant changes during gestation and several days following parturition, there was a highly significant peak at the time of birth. Our findings mirror the results of previous studies on pregnancy and steroid hormones of other live-bearing snakes, lizards, and mammals. As expected, there was a significant relationship between duration of labor and litter size; however, although levels of CORT did not achieve significance, there was a positive trend with litter size. We suggest that elevation of CORT at birth is involved in the mobilization and regulation of energy stores necessary for the physiological process of parturition and as a possible mechanism to trigger birth.


Asunto(s)
Agkistrodon/sangre , Agkistrodon/fisiología , Corticosterona/sangre , Hormonas Esteroides Gonadales/sangre , Ovoviviparidad/fisiología , Animales , Femenino , Parto/fisiología
17.
J Hered ; 102(6): 759-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21868391

RESUMEN

Until recently, facultative automictic parthenogenesis within the squamate reptiles exhibiting ZZ:ZW genetic sex determination has resulted in single reproductive events producing male (ZZ) or female (ZW) offspring. With the recent discovery of viable parthenogenetically produced female (WW) Boa constrictors, the existence of further parthenogenetic events resulting in WW females was questioned. Here, we provide genetic evidence for consecutive virgin births by a female Colombian rainbow boa (Epicrates maurus), resulting in the production of WW females likely through terminal fusion automixis. Samples were screened at 22 microsatellite loci with 12 amplifying unambiguous products. Of these, maternal heterozygosity was observed in 4, with the offspring differentially homozygous at each locus. This study documents the first record of parthenogenesis within the genus Epicrates, a second within the serpent lineage Boidae, and the third genetically confirmed case of consecutive virgin births of viable offspring within any vertebrate lineage. Unlike the recent record in Boa constrictors, the female described here was isolated from conspecifics from birth, demonstrating that males are not required to stimulate parthenogenetic reproduction in this species and possibly other Boas.


Asunto(s)
Boidae/genética , Partenogénesis/genética , Parto/genética , Reproducción/genética , Procesos de Determinación del Sexo/genética , Animales , Dermatoglifia del ADN , Femenino , Heterocigoto , Homocigoto , Repeticiones de Microsatélite , Análisis para Determinación del Sexo
18.
Mol Phylogenet Evol ; 55(1): 153-167, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20006722

RESUMEN

We analyzed both mitochondrial (mt-) and nuclear (n) DNAs in a conservation phylogenetic framework to examine deep and shallow histories of the Beaded Lizard (Heloderma horridum) and Gila Monster (H. suspectum) throughout their geographic ranges in North and Central America. Both mtDNA and intron markers clearly partitioned each species. One intron and mtDNA further subdivided H. horridum into its four recognized subspecies (H. n. alvarezi, charlesbogerti,exasperatum, and horridum). However, the two subspecies of H. suspectum (H. s. suspectum and H. s. cinctum) were undefined. A supertree approach sustained these relationships. Overall, the Helodermatidae is reaffirmed as an ancient and conserved group. Its most recent common ancestor (MRCA) was Lower Eocene [35.4 million years ago (mya)], with a approximately 25 my period of stasis before the MRCA of H. horridum diversified in Lower Miocene. Another approximately 5 my passed before H. h. exasperatum and H. h. horridum diverged, followed by approximately 1.5 my before H. h. alvarezi and H. h. charlesbogerti separated. Heloderma suspectum reflects an even longer period of stasis (approximately 30 my) before diversifying from its MRCA. Both H. suspectum (México) and H. h. alvarezi also revealed evidence of historic range expansion following a recent bottleneck. Our conservation phylogenetic approach emphasizes the origin and diversification of this group, yields information on the manner by which past environmental variance may have impacted its populations and, in turn, allows us to disentangle historic from contemporary impacts that might threaten its long-term persistence. The value of helodermatid conservation resides in natural services and medicinal products, particularly venom constituents, and these are only now being realized.


Asunto(s)
Evolución Molecular , Lagartos/genética , Filogenia , Animales , Biodiversidad , Núcleo Celular/genética , América Central , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Mutación INDEL , Intrones , Lagartos/clasificación , Modelos Genéticos , América del Norte , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
Gen Comp Endocrinol ; 159(2-3): 226-35, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18823979

RESUMEN

To better understand the proximate causation of the two major types of mating seasons described for North American pitvipers, we conducted a field study of the cottonmouth (Agkistrodon piscivorus) in Georgia from September 2003 to May 2005 that included an extensive observational regime and collection of tissues for behavioral, anatomical, histological, and hormone analysis. Enzyme immunoassays (EIA) of plasma samples and standard histological procedures were conducted on reproductive tissues. Evidence from the annual testosterone (T) and sexual segment of the kidney (SSK) cycle and their relationship to the spermatogenic cycle provide correlative evidence of a unimodal mating pattern in this species of pitviper, as these variables consistently predict the mating season in all snake species previously examined under natural conditions. In most reptiles studied to date, high plasma levels of T and corticosterone (CORT) coincide during the mating period, making the cottonmouth an exception to this trend; we suggest two possible explanations for increased CORT during spring (regulation of a spring basking period), and decreased CORT during summer (avoiding reproductive behavioral inhibition), in this species.


Asunto(s)
Agkistrodon/sangre , Agkistrodon/fisiología , Testosterona/sangre , Animales , Corticosterona/sangre , Corticosterona/metabolismo , Riñón/metabolismo , Masculino , Tamaño de los Órganos , Reproducción/fisiología , Estaciones del Año , Espermatogénesis/fisiología , Testículo/anatomía & histología , Testosterona/metabolismo
20.
Biol Rev Camb Philos Soc ; 83(4): 601-20, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18947336

RESUMEN

Snakes typically are not considered top carnivores, yet in many ecosystems they are a major predatory influence. A literature search confirmed that terrestrial ectotherms such as snakes are largely absent in most discussions of predator-prey dynamics. Here, we review classical functional and numerical responses of predator-prey relationships and then assess whether these traditional views are consistent with what we know of one group of snakes (true vipers and pitvipers: Viperidae). Specifically, we compare behavioural and physiological characteristics of vipers with those of more commonly studied mammalian (endothermic) predators and discuss how functional and numerical responses of vipers are fundamentally different. Overall, when compared to similar-sized endotherms, our analysis showed that vipers have: (i) lower functional responses owing primarily to longer prey handling times resulting from digestive limitations of consuming large prey and, for some adults, tolerance of fasting; (ii) stronger numerical responses resulting from higher efficiency of converting food into fitness currency (progeny), although this response often takes longer to be expressed; and (iii) reduced capacity for rapid numerical responses to short-term changes in prey abundance. Given these factors, the potential for viperids to regulate prey populations would most likely occur when prey populations are low. We provide suggestions for future research on key issues in predator-prey relationships of vipers, including their position within the classical paradigms of functional and numerical responses.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria/fisiología , Viperidae/fisiología , Animales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA