Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 55(14): 6980-7, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27385292

RESUMEN

Photomagnetism in three-dimensional Co/Fe Prussian blue analogues is a complex phenomenon, whose detailed mechanism is not yet fully understood. Recently, researchers have been able to prepare molecular fragments of these networks using a building block synthetic approach from mononuclear precursors. The main objective in this strategy is to isolate the smallest units that show an intramolecular electron transfer to have a better understanding of the electronic processes. A prior requirement to the development of this kind of system is to understand to what extent electronic and magnetic properties are inherited from the corresponding precursors. In this work, we investigate the electronic and magnetic properties of the FeTp precursor (N(C4H9)4)[TpFe(III)(CN)3], (Tp being tris-pyrazolyl borate) of a recently reported binuclear cyanido-bridged Fe/Co complex. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements at the Fe L2,3 edges (2p → 3d) supported by ligand field multiplet calculations have allowed to determine the spin and orbit magnetic moments. Inaccuracy of the spin sum rule in the case of low-spin Fe(III) ion was demonstrated. An exceptionally large value of the orbital magnetic moment is found (0.9 µB at T = 2 K and B = 6.5 T) that is likely to play an important role in the magnetic and photomagnetic properties of molecular Fe/Co Prussian blue analogues.

2.
ACS Nano ; 7(5): 4022-9, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23627649

RESUMEN

Self-assembled vertical epitaxial nanostructures form a new class of heterostructured materials that has emerged in recent years. Interestingly, such kind of architectures can be grown using combinatorial processes, implying sequential deposition of distinct materials. Although opening many perspectives, this combinatorial nature has not been fully exploited yet. This work demonstrates that the combinatorial character of the growth can be further exploited in order to obtain alloy nanowires coherently embedded in a matrix. This issue is illustrated in the case of a fully epitaxial system: CoxNi1-x nanowires in CeO2/SrTiO3(001). The advantage brought by the ability to grow alloys is illustrated by the control of the magnetic anisotropy of the nanowires when passing from pure Ni wires to CoxNi1-x alloys. Further exploitation of this combinatorial approach may pave the way toward full three-dimensional heteroepitaxial architectures through axial structuring of the wires.

3.
Rev Sci Instrum ; 82(2): 026109, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21361648

RESUMEN

Nonlinear systems can be probed by driving them with two or more pure tones while measuring the intermodulation products of the drive tones in the response. We describe a digital lockin analyzer which is designed explicitly for this purpose. The analyzer is implemented on a field-programmable gate array, providing speed in analysis, real-time feedback, and stability in operation. The use of the analyzer is demonstrated for intermodulation atomic force microscopy. A generalization of the intermodulation spectral technique to arbitrary drive waveforms is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA