Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 607(7920): 823-830, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859174

RESUMEN

Filamentous enzymes have been found in all domains of life, but the advantage of filamentation is often elusive1. Some anaerobic, autotrophic bacteria have an unusual filamentous enzyme for CO2 fixation-hydrogen-dependent CO2 reductase (HDCR)2,3-which directly converts H2 and CO2 into formic acid. HDCR reduces CO2 with a higher activity than any other known biological or chemical catalyst4,5, and it has therefore gained considerable interest in two areas of global relevance: hydrogen storage and combating climate change by capturing atmospheric CO2. However, the mechanistic basis of the high catalytic turnover rate of HDCR has remained unknown. Here we use cryo-electron microscopy to reveal the structure of a short HDCR filament from the acetogenic bacterium Thermoanaerobacter kivui. The minimum repeating unit is a hexamer that consists of a formate dehydrogenase (FdhF) and two hydrogenases (HydA2) bound around a central core of hydrogenase Fe-S subunits, one HycB3 and two HycB4. These small bacterial polyferredoxin-like proteins oligomerize through their C-terminal helices to form the backbone of the filament. By combining structure-directed mutagenesis with enzymatic analysis, we show that filamentation and rapid electron transfer through the filament enhance the activity of HDCR. To investigate the structure of HDCR in situ, we imaged T. kivui cells with cryo-electron tomography and found that HDCR filaments bundle into large ring-shaped superstructures attached to the plasma membrane. This supramolecular organization may further enhance the stability and connectivity of HDCR to form a specialized metabolic subcompartment within the cell.


Asunto(s)
Dióxido de Carbono , Membrana Celular , Hidrógeno , Hidrogenasas , Nanocables , Dióxido de Carbono/metabolismo , Membrana Celular/enzimología , Microscopía por Crioelectrón , Estabilidad de Enzimas , Hidrógeno/metabolismo , Hidrogenasas/química , Hidrogenasas/genética , Hidrogenasas/metabolismo , Hidrogenasas/ultraestructura , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Thermoanaerobacter/citología , Thermoanaerobacter/enzimología
2.
Nat Plants ; 7(4): 524-538, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846594

RESUMEN

Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.


Asunto(s)
Proteínas Bacterianas/genética , Complejo de Proteína del Fotosistema II/genética , Proteínas Bacterianas/ultraestructura , Fotosíntesis , Complejo de Proteína del Fotosistema II/ultraestructura , Thermosynechococcus/genética , Thermosynechococcus/ultraestructura
3.
Elife ; 92020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33191913

RESUMEN

The yeast THO complex is recruited to active genes and interacts with the RNA-dependent ATPase Sub2 to facilitate the formation of mature export-competent messenger ribonucleoprotein particles and to prevent the co-transcriptional formation of RNA:DNA-hybrid-containing structures. How THO-containing complexes function at the mechanistic level is unclear. Here, we elucidated a 3.4 Å resolution structure of Saccharomyces cerevisiae THO-Sub2 by cryo-electron microscopy. THO subunits Tho2 and Hpr1 intertwine to form a platform that is bound by Mft1, Thp2, and Tex1. The resulting complex homodimerizes in an asymmetric fashion, with a Sub2 molecule attached to each protomer. The homodimerization interfaces serve as a fulcrum for a seesaw-like movement concomitant with conformational changes of the Sub2 ATPase. The overall structural architecture and topology suggest the molecular mechanisms of nucleic acid remodeling during mRNA biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Conformación Proteica , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
4.
Nat Commun ; 11(1): 494, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980611

RESUMEN

Photosynthetic organisms capture light energy to drive their energy metabolism, and employ the chemical reducing power to convert carbon dioxide (CO2) into organic molecules. Photorespiration, however, significantly reduces the photosynthetic yields. To survive under low CO2 concentrations, cyanobacteria evolved unique carbon-concentration mechanisms that enhance the efficiency of photosynthetic CO2 fixation, for which the molecular principles have remained unknown. We show here how modular adaptations enabled the cyanobacterial photosynthetic complex I to concentrate CO2 using a redox-driven proton-pumping machinery. Our cryo-electron microscopy structure at 3.2 Å resolution shows a catalytic carbonic anhydrase module that harbours a Zn2+ active site, with connectivity to proton-pumping subunits that are activated by electron transfer from photosystem I. Our findings illustrate molecular principles in the photosynthetic complex I machinery that enabled cyanobacteria to survive in drastically changing CO2 conditions.


Asunto(s)
Carbono/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fotosíntesis , Bombas de Protones/metabolismo , Dióxido de Carbono/metabolismo , Dominio Catalítico , Complejo I de Transporte de Electrón/química , Oxidación-Reducción , Electricidad Estática , Thermus/metabolismo , Agua/metabolismo
5.
Science ; 363(6424): 257-260, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30573545

RESUMEN

Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo-electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process.


Asunto(s)
Cianobacterias/fisiología , Complejo I de Transporte de Electrón/fisiología , Ferredoxinas/fisiología , Fotosíntesis , Complejo de Proteína del Fotosistema I/fisiología , Microscopía por Crioelectrón , Transporte de Electrón , Modelos Moleculares , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...