Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(7): 1964-1977, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38885464

RESUMEN

Bacteriophage RNA polymerases, in particular T7 RNA polymerase (RNAP), are well-characterized and popular enzymes for many RNA applications in biotechnology both in vitro and in cellular settings. These monomeric polymerases are relatively inexpensive and have high transcription rates and processivity to quickly produce large quantities of RNA. T7 RNAP also has high promoter-specificity on double-stranded DNA (dsDNA) such that it only initiates transcription downstream of its 17-base promoter site on dsDNA templates. However, there are many promoter-independent T7 RNAP transcription reactions involving transcription initiation in regions of single-stranded DNA (ssDNA) that have been reported and characterized. These promoter-independent transcription reactions are important to consider when using T7 RNAP transcriptional systems for DNA nanotechnology and DNA computing applications, in which ssDNA domains often stabilize, organize, and functionalize DNA nanostructures and facilitate strand displacement reactions. Here we review the existing literature on promoter-independent transcription by bacteriophage RNA polymerases with a specific focus on T7 RNAP, and provide examples of how promoter-independent reactions can disrupt the functionality of DNA strand displacement circuit components and alter the stability and functionality of DNA-based materials. We then highlight design strategies for DNA nanotechnology applications that can mitigate the effects of promoter-independent T7 RNAP transcription. The design strategies we present should have an immediate impact by increasing the rate of success of using T7 RNAP for applications in DNA nanotechnology and DNA computing.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ADN , Nanoestructuras , Regiones Promotoras Genéticas , Transcripción Genética , Proteínas Virales , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Nanoestructuras/química , ADN/metabolismo , ADN/genética , ADN/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , Nanotecnología/métodos , Bacteriófago T7/genética
2.
ACS Synth Biol ; 13(7): 2019-2028, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38885472

RESUMEN

Synthetic biology is revolutionizing our approaches to biocomputing, diagnostics, and environmental monitoring through the use of designed genetic circuits that perform a function within a single cell. More complex functions can be performed by multiple cells that coordinate as they perform different subtasks. Cell-cell communication using molecular signals is particularly suited for aiding in this communication, but the number of molecules that can be used in different communication channels is limited. Here we investigate how proteases can limit the broadcast range of communicating cells. We find that adding barrierpepsin to Saccharomyces cerevisiae cells in two-dimensional multicellular networks that use α-factor signaling prevents cells beyond a specific radius from responding to α-factor signals. Such limiting of the broadcast range of cells could allow multiple cells to use the same signaling molecules to direct different communication processes and functions, provided that they are far enough from one another. These results suggest a means by which complex synthetic cellular networks using only a few signals for communication could be created by structuring a community of cells to create distinct broadcast environments.


Asunto(s)
Comunicación Celular , Saccharomyces cerevisiae , Transducción de Señal , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Péptido Hidrolasas/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Nanoscale ; 16(24): 11688-11695, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38860495

RESUMEN

DNA nanotechnology offers many means to synthesize custom nanostructured materials from the ground up in a hierarchical fashion. While the assembly of DNA nanostructures from small (nanometer-scale) monomeric components has been studied extensively, how the hierarchical assembly of rigid or semi-flexible units produces multi-micron scale structures is less understood. Here we demonstrate a mechanism for assembling micron-scale semi-flexible DNA nanotubes into extended structures. These nanotubes assemble from nanometer-scale tile monomers into materials via heterogeneous nucleation from rigid, Y-shaped DNA origami seeds to form Y-seeded nanotube architectures. These structures then assemble into networks via nanotube end-to-end joining. We measure the kinetics of network growth and find that the assembly of networks can be approximated by a model of hierarchical assembly that assumes a single joining rate between DNA nanotube ends. Because the number of nucleation sites on Y-seeds and their spatial arrangement can be systematically varied by design, this hierarchical assembly process could be used to form a wide variety of networks and to understand the assembly mechanisms that lead to different types of material architectures at length scales of tens to hundreds of microns.


Asunto(s)
ADN , Nanotubos , Nanotubos/química , ADN/química , Nanotecnología , Conformación de Ácido Nucleico , Cinética
4.
Sci Adv ; 10(14): eadn3329, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578999

RESUMEN

Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.


Asunto(s)
Redes Reguladoras de Genes , Recombinación Genética , ADN/genética
5.
J Appl Behav Anal ; 57(2): 444-454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379177

RESUMEN

Response interruption and redirection (RIRD) is a common treatment for automatically reinforced vocal stereotypy; it involves the contingent presentation of task instructions. Tasks that are included in RIRD are typically selected based on caregiver report, which may affect the efficacy of RIRD. The purpose of the current study was to evaluate the role of task preference in the efficacy of RIRD for four participants who engaged in vocal stereotypy. We conducted task-preference assessments and selected tasks of varying preferences to include in RIRD. For three out of four participants, the results showed that RIRD with higher preference tasks was not effective at reducing vocal stereotypy, whereas RIRD with lower preference tasks was effective for all participants.


Asunto(s)
Trastorno de Movimiento Estereotipado , Voz , Humanos , Terapia Conductista/métodos , Conducta Estereotipada/fisiología , Trastorno de Movimiento Estereotipado/terapia
6.
PLoS One ; 19(2): e0295923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306330

RESUMEN

DNA-functionalized hydrogels are capable of sensing oligonucleotides, proteins, and small molecules, and specific DNA sequences sensed in the hydrogels' environment can induce changes in these hydrogels' shape and fluorescence. Fabricating DNA-functionalized hydrogel architectures with multiple domains could make it possible to sense multiple molecules and undergo more complicated macroscopic changes, such as changing fluorescence or changing the shapes of regions of the hydrogel architecture. However, automatically fabricating multi-domain DNA-functionalized hydrogel architectures, capable of enabling the construction of hydrogel architectures with tens to hundreds of different domains, presents a significant challenge. We describe a platform for fabricating multi-domain DNA-functionalized hydrogels automatically at the micron scale, where reaction and diffusion processes can be coupled to program material behavior. Using this platform, the hydrogels' material properties, such as shape and fluorescence, can be programmed, and the fabricated hydrogels can sense their environment. DNA-functionalized hydrogel architectures with domain sizes as small as 10 microns and with up to 4 different types of domains can be automatically fabricated using ink volumes as low as 50 µL. We also demonstrate that hydrogels fabricated using this platform exhibit responses similar to those of DNA-functionalized hydrogels fabricated using other methods by demonstrating that DNA sequences can hybridize within them and that they can undergo DNA sequence-induced shape change.


Asunto(s)
ADN , Hidrogeles , Hidrogeles/metabolismo , ADN/metabolismo , Oligonucleótidos , Fluorescencia
7.
Proc Natl Acad Sci U S A ; 121(6): e2309457121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289949

RESUMEN

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in viscoelastic biomaterials exhibiting fluid-like properties under rest and low shear, but solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly in a manner similar to formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Animales , Hidrogeles/química , Biopolímeros , Mamíferos
8.
Soft Matter ; 19(45): 8779-8789, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942543

RESUMEN

DNA-coated colloids can crystallize into a multitude of lattices, ranging from face-centered cubic to diamond, opening avenues to producing structures with useful photonic properties. The potential design space of DNA-coated colloids is large, but its exploration is hampered by a reliance on chemically modified DNA that is slow and expensive to commercially synthesize. Here we introduce a method to controllably tailor the sequences of DNA-coated particles by covalently appending new sequence domains onto the DNA grafted to colloidal particles. The tailored particles crystallize as readily and at the same temperature as those produced via direct chemical synthesis, making them suitable for self-assembly. Moreover, we show that particles coated with a single sequence can be converted into a variety of building blocks with differing specificities by appending different DNA sequences to them. This method will make it practical to identify optimal and complex particle sequence designs and paves the way to programming the assembly kinetics of DNA-coated colloids.


Asunto(s)
Coloides , ADN , ADN/química , Coloides/química , Temperatura , Cinética
9.
ACS Synth Biol ; 12(11): 3424-3432, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37844274

RESUMEN

The ability to finely tune reaction rates and binding energies between components has made DNA strand displacement circuits promising candidates to replicate the complex regulatory functions of biological reaction networks. However, these circuits often lack crucial properties, such as signal turnover and the ability to transiently respond to successive input signals that require the continuous input of chemical energy. Here, we introduce a method for providing such energy to strand displacement networks in a controlled fashion: an engineered DNA helicase, Rep-X, that transiently dehybridizes specific DNA complexes, enabling the strands in the complex to participate in downstream hybridization or strand displacement reactions. We demonstrate how this process can direct the formation of specific metastable structures by design and that this dehybridization process can be controlled by DNA strand displacement reactions that effectively protect and deprotect a double-stranded complex from unwinding by Rep-X. These findings can guide the design of active DNA strand displacement regulatory networks, in which sustained dynamical behavior is fueled by helicase-regulated unwinding.


Asunto(s)
ADN de Cadena Simple , ADN , ADN/metabolismo , ADN Helicasas/genética , Hibridación de Ácido Nucleico , Proteínas de Unión al ADN/genética
10.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645783

RESUMEN

Molecular biosensors that accurately measure protein concentrations without external equipment are critical for solving numerous problems in diagnostics and therapeutics. Modularly transducing the binding of protein antibodies, protein switches or aptamers into a useful output remains challenging. Here, we develop a biosensing platform based on aptamer-regulated transcription in which aptamers integrated into transcription templates serve as inputs to molecular circuits that can be programmed to a produce a variety of responses. We modularly design molecular biosensors using this platform by swapping aptamer domains for specific proteins and downstream domains that encode different RNA transcripts. By coupling aptamer-regulated transcription with diverse transduction circuits, we rapidly construct analog protein biosensors or digital protein biosensors with detection ranges that can be tuned over two orders of magnitude. Aptamer-regulated transcription is a straightforward and inexpensive approach for constructing programmable protein biosensors suitable for diverse research and diagnostic applications.

11.
Soft Matter ; 19(34): 6525-6534, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37589045

RESUMEN

The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour.


Asunto(s)
Hidrogeles , Cloruro de Sodio , Polimerizacion , Biomimética , ADN
12.
bioRxiv ; 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37398067

RESUMEN

Relating the macroscopic properties of protein-based materials to their underlying component microstructure is an outstanding challenge. Here, we exploit computational design to specify the size, flexibility, and valency of de novo protein building blocks, as well as the interaction dynamics between them, to investigate how molecular parameters govern the macroscopic viscoelasticity of the resultant protein hydrogels. We construct gel systems from pairs of symmetric protein homo-oligomers, each comprising 2, 5, 24, or 120 individual protein components, that are crosslinked either physically or covalently into idealized step-growth biopolymer networks. Through rheological assessment and molecular dynamics (MD) simulation, we find that the covalent linkage of multifunctional precursors yields hydrogels whose viscoelasticity depends on the crosslink length between the constituent building blocks. In contrast, reversibly crosslinking the homo-oligomeric components with a computationally designed heterodimer results in non-Newtonian biomaterials exhibiting fluid-like properties under rest and low shear, but shear-stiffening solid-like behavior at higher frequencies. Exploiting the unique genetic encodability of these materials, we demonstrate the assembly of protein networks within living mammalian cells and show via fluorescence recovery after photobleaching (FRAP) that mechanical properties can be tuned intracellularly, in correlation with matching formulations formed extracellularly. We anticipate that the ability to modularly construct and systematically program the viscoelastic properties of designer protein-based materials could have broad utility in biomedicine, with applications in tissue engineering, therapeutic delivery, and synthetic biology.

14.
Sci Adv ; 8(36): eabq4834, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070388

RESUMEN

Designed and engineered protein and DNA nanopores can be used to sense and characterize single molecules and control transmembrane transport of molecular species. However, designed biomolecular pores are less than 100 nm in length and are used primarily for transport across lipid membranes. Nanochannels that span longer distances could be used as conduits for molecules between nonadjacent compartments or cells. Here, we design micrometer-long, 7-nm-diameter DNA nanochannels that small molecules can traverse according to the laws of continuum diffusion. Binding DNA origami caps to channel ends eliminates transport and demonstrates that molecules diffuse from one channel end to the other rather than permeating through channel walls. These micrometer-length nanochannels can also grow, form interconnects, and interface with living cells. This work thus shows how to construct multifunctional, dynamic agents that control molecular transport, opening ways of studying intercellular signaling and modulating molecular transport between synthetic and living cells.


Asunto(s)
ADN , Nanoporos , Transporte Biológico , ADN/química , Difusión , Nanotecnología
15.
Nat Chem ; 14(11): 1224-1232, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35927329

RESUMEN

Engineered far-from-equilibrium synthetic chemical networks that pulse or switch states in response to environmental signals could precisely regulate the kinetics of chemical synthesis or self-assembly. Currently, such networks must be extensively tuned to compensate for the different activities of and unintended reactions between a network's various chemical components. Modular elements with standardized performance could be used to rapidly construct networks with designed functions. Here we develop standardized excitable chemical regulatory elements, termed genelets, and use them to construct complex in vitro transcriptional networks. We develop a protocol for identifying >15 interchangeable genelet elements with uniform performance and minimal crosstalk. These elements can be combined to engineer feedforward and feedback modules whose dynamics match those predicted by a simple kinetic model. Modules can then be rationally integrated and organized into networks that produce tunable temporal pulses and act as multistate switchable memories. Standardized genelet elements, and the workflow to identify more, should make engineering complex far-from-equilibrium chemical dynamics routine.


Asunto(s)
Redes Reguladoras de Genes , Cinética
16.
R Soc Open Sci ; 9(8): 220200, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36016917

RESUMEN

In multi-cellular organisms, cells and tissues coordinate biochemical signal propagation across length scales spanning micrometres to metres. Designing synthetic materials with similar capacities for coordinated signal propagation could allow these systems to adaptively regulate themselves across space and over time. Here, we combine ideas from cell signalling and electronic circuitry to propose a biochemical waveguide that transmits information in the form of a concentration of a DNA species on a directed path. The waveguide could be seamlessly integrated into a soft material because there is virtually no difference between the chemical or physical properties of the waveguide and the material it is embedded within. We propose the design of DNA strand displacement reactions to construct the system and, using reaction-diffusion models, identify kinetic and diffusive parameters that enable super-diffusive transport of DNA species via autocatalysis. Finally, to support experimental waveguide implementation, we propose a sink reaction and spatially inhomogeneous DNA concentrations that could mitigate the spurious amplification of an autocatalyst within the waveguide, allowing for controlled waveguide triggering. Chemical waveguides could facilitate the design of synthetic biomaterials with distributed sensing machinery integrated throughout their structure and enable coordinated self-regulating programmes triggered by changing environmental conditions.

17.
Nat Mater ; 21(4): 390-397, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361951

RESUMEN

Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.


Asunto(s)
Materiales Biocompatibles , Biología Sintética , Polímeros
18.
Angew Chem Int Ed Engl ; 61(24): e202114581, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35302706

RESUMEN

The sequence-specific hybridization of DNA facilitates its use as a building block for designer nanoscale structures and reaction networks that perform computations. However, the strong binding energy of Watson-Crick base pairing that underlies this specificity also causes the DNA dehybridization rate to depend sensitively on sequence length and temperature. This strong dependency imposes stringent constraints on the design of multi-step DNA reactions. Here we show how an ATP-dependent helicase, Rep-X, can drive specific dehybridization reactions at rates independent of sequence length, removing the constraints of equilibrium on DNA hybridization and dehybridization. To illustrate how this new capacity can speed up designed DNA reaction networks, we show that Rep-X extends the range of conditions where the primer exchange reaction, which catalytically adds a domain provided by a hairpin template to a DNA substrate, proceeds rapidly.


Asunto(s)
ADN Catalítico , Emparejamiento Base , ADN/química , ADN Catalítico/metabolismo , Cinética , Polimerizacion
19.
Nat Commun ; 12(1): 5729, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593818

RESUMEN

Mesoscale molecular assemblies on the cell surface, such as cilia and filopodia, integrate information, control transport and amplify signals. Designer cell-surface assemblies could control these cellular functions. Such assemblies could be constructed from synthetic components ex vivo, making it possible to form such structures using modern nanoscale self-assembly and fabrication techniques, and then oriented on the cell surface. Here we integrate synthetic devices, micron-scale DNA nanotubes, with mammalian cells by anchoring them by their ends to specific cell surface receptors. These filaments can measure shear stresses between 0-2 dyn/cm2, a regime important for cell signaling. Nanotubes can also grow while anchored to cells, thus acting as dynamic cell components. This approach to cell surface engineering, in which synthetic biomolecular assemblies are organized with existing cellular architecture, could make it possible to build new types of sensors, machines and scaffolds that can interface with, control and measure properties of cells.


Asunto(s)
Técnicas Biosensibles/métodos , Ingeniería Celular/métodos , ADN/química , Microtecnología/métodos , Nanotubos/química , Células HEK293 , Células HeLa , Humanos , Estrés Mecánico
20.
Angew Chem Int Ed Engl ; 60(1): 338-344, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32916026

RESUMEN

Living systems can form and recover complex chemical patterns with precisely sized features in the ranges of tens or hundreds of microns. We show how designed reaction-diffusion processes can likewise produce precise patterns, termed attractor patterns, that reform their precise shape after being perturbed. We use oligonucleotide reaction networks, photolithography, and microfluidic delivery to form precisely controlled attractor patterns and study the responses of these patterns to different localized perturbations. Linear and "hill"-shaped patterns formed and stabilized into shapes and at time scales consistent with reaction-diffusion models. When patterns were perturbed in particular locations with UV light, they reliably reformed their steady-state profiles. Recovery also occurred after repeated perturbations. By designing the far-from-equilibrium dynamics of a chemical system, this study shows how it is possible to design spatial patterns of molecules that are sustained and regenerated by continually evolving towards a specific steady state configuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...