Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895436

RESUMEN

Background: Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically compared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), a cancer whose aggressive clinical course making it exceedingly challenging to obtain tumor biopsies. Methods: Here, a prospective cohort of 49 plasma samples obtained before, during, and after treatment from 20 patients with recurrent SCLC, we study cfDNA low pass whole genome (0.1X coverage) and exome (130X) sequencing in comparison with time-point matched tumor, characterized using exome and transcriptome sequencing. Results: Direct comparison of cfDNA versus tumor biopsy reveals that cfDNA not only mirrors the mutation and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms and cancer driver alterations not found in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks tumor response, progression, and clonal evolution. Genomic sequencing coverage of plasma DNA fragments around transcription start sites shows distinct treatment-related changes and captures the expression of key transcription factors such as NEUROD1 and REST in the corresponding SCLC tumors, allowing prediction of SCLC neuroendocrine phenotypes and treatment responses. Conclusions: These findings have important implications for non-invasive stratification and subtype-specific therapies for patients with SCLC, now treated as a single disease.

2.
Cell Rep Med ; 5(6): 101610, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897168

RESUMEN

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Microambiente Tumoral , Humanos , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Células Neuroendocrinas/patología , Células Neuroendocrinas/metabolismo , Femenino , Masculino , Pronóstico
3.
Artículo en Inglés | MEDLINE | ID: mdl-38819340

RESUMEN

PURPOSE: Changes in quantitative magnetic resonance imaging (qMRI) are frequently observed during chemotherapy or radiation therapy (RT). It is hypothesized that qMRI features are reflective of underlying tissue responses. It's unknown what underlying genomic characteristics underly qMRI changes. We hypothesized that qMRI changes may correlate with DNA damage response (DDR) capacity within human tumors. Therefore, we designed the current study to correlate qMRI changes from daily RT treatment with underlying tumor transcriptomic profiles. METHODS AND MATERIALS: Study participants were prospectively enrolled (National Clinical Trial 03500081). RNA expression levels for 757 genes from pretreatment biopsies were obtained using a custom panel that included signatures of radiation sensitivity and DDR. Daily qMRI data were obtained from a 1.5 Tesla MR linear accelerator. Using these images, d-slow, d-star, perfusion, and apparent diffusion coefficient-mean values in tumors were plotted per-fraction, over time, and associated with genomic pathways. RESULTS: A total of 1022 qMRIs were obtained from 39 patients and both genomic data and qMRI data from 27 total patients. For 20 of those patients, we also generated normal tissue transcriptomic data. Radio sensitivity index values most closely associated with tissue of origin. Multiple genomic pathways including DNA repair, peroxisome, late estrogen receptor responses, KRAS signaling, and UV response were significantly associated with qMRI feature changes (P < .001). CONCLUSIONS: Genomic pathway associations across metabolic, RT sensitivity, and DDR pathways indicate common tumor biology that may correlate with qMRI changes during a course of treatment. Such data provide hypothesis-generating novel mechanistic insight into the biologic meaning of qMRI changes during treatment and enable optimal selection of imaging biomarkers for biologically MR-guided RT.

4.
JAMA Netw Open ; 7(5): e2410819, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691356

RESUMEN

Importance: In 2018, the first online adaptive magnetic resonance (MR)-guided radiotherapy (MRgRT) system using a 1.5-T MR-equipped linear accelerator (1.5-T MR-Linac) was clinically introduced. This system enables online adaptive radiotherapy, in which the radiation plan is adapted to size and shape changes of targets at each treatment session based on daily MR-visualized anatomy. Objective: To evaluate safety, tolerability, and technical feasibility of treatment with a 1.5-T MR-Linac, specifically focusing on the subset of patients treated with an online adaptive strategy (ie, the adapt-to-shape [ATS] approach). Design, Setting, and Participants: This cohort study included adults with solid tumors treated with a 1.5-T MR-Linac enrolled in Multi Outcome Evaluation for Radiation Therapy Using the MR-Linac (MOMENTUM), a large prospective international study of MRgRT between February 2019 and October 2021. Included were adults with solid tumors treated with a 1.5-T MR-Linac. Data were collected in Canada, Denmark, The Netherlands, United Kingdom, and the US. Data were analyzed in August 2023. Exposure: All patients underwent MRgRT using a 1.5-T MR-Linac. Radiation prescriptions were consistent with institutional standards of care. Main Outcomes and Measures: Patterns of care, tolerability, and technical feasibility (ie, treatment completed as planned). Acute high-grade radiotherapy-related toxic effects (ie, grade 3 or higher toxic effects according to Common Terminology Criteria for Adverse Events version 5.0) occurring within the first 3 months after treatment delivery. Results: In total, 1793 treatment courses (1772 patients) were included (median patient age, 69 years [range, 22-91 years]; 1384 male [77.2%]). Among 41 different treatment sites, common sites were prostate (745 [41.6%]), metastatic lymph nodes (233 [13.0%]), and brain (189 [10.5%]). ATS was used in 1050 courses (58.6%). MRgRT was completed as planned in 1720 treatment courses (95.9%). Patient withdrawal caused 5 patients (0.3%) to discontinue treatment. The incidence of radiotherapy-related grade 3 toxic effects was 1.4% (95% CI, 0.9%-2.0%) in the entire cohort and 0.4% (95% CI, 0.1%-1.0%) in the subset of patients treated with ATS. There were no radiotherapy-related grade 4 or 5 toxic effects. Conclusions and Relevance: In this cohort study of patients treated on a 1.5-T MR-Linac, radiotherapy was safe and well tolerated. Online adaptation of the radiation plan at each treatment session to account for anatomic variations was associated with a low risk of acute grade 3 toxic effects.


Asunto(s)
Neoplasias , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Radioterapia Guiada por Imagen/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagen , Adulto , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Estudios de Factibilidad , Estudios de Cohortes , Anciano de 80 o más Años
6.
Adv Radiat Oncol ; 9(1): 101304, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260234

RESUMEN

Purpose: The response of cystic brain metastases (BMets) to radiation therapy is poorly understood, with conflicting results regarding local control, overall survival, and treatment-related toxicity. This study aims to examine the role of Gamma Knife (GK) in managing cystic BMets. Methods and Materials: Volumetric analysis was conducted to measure tumor and edema volume at the time of GK and follow-up magnetic resonance imaging studies. Survival was described using the Kaplan-Meier method, and the cumulative incidence of progression was described using the Aalen-Johansen estimator. We evaluated the association of 4 variables with survival using Cox regression analysis. Results: Between 2016 and 2021, 54 patients with 83 cystic BMets were treated with GK at our institution. Lung cancer was the most common pathology (51.9%), followed by breast cancer (13.0%). The mean target volume was 2.7 cm3 (range, 0.1-39.0 cm3), and the mean edema volume was 13.9 cm3 (range, 0-165.5 cm3). The median prescription dose of single-fraction and fractionated GK was 20 Gy (range, 14-27.5 Gy). With a median follow-up of 8.9 months, the median survival time (MST) was 11.1 months, and the 1-year local control rate was 75.9%. Gamma Knife was associated with decreased tumor and edema volumes over time, although 68.5% of patients required steroids after GK. Patients whose tumors grew beyond baseline after GK received significantly more whole-brain radiation therapy (WBRT) before GK than those whose tumors declined after GK. Higher age at diagnosis of BMets and pre-GK systemic therapy were associated with worse survival, with an MST of 7.8 months in patients who received it compared with 23.3 months in those who did not. Conclusions: Pre-GK WBRT may select for BMets with increased radioresistance. This study highlights the ability of GK to control cystic BMets with the cost of high posttreatment steroid use.

7.
Phys Med Biol ; 68(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37903437

RESUMEN

Objective.Different radiation therapy (RT) strategies, e.g. conventional fractionation RT (CFRT), hypofractionation RT (HFRT), stereotactic body RT (SBRT), adaptive RT, and re-irradiation are often used to treat head and neck (HN) cancers. Combining and/or comparing these strategies requires calculating biological effective dose (BED). The purpose of this study is to develop a practical process to estimate organ-specific radiobiologic model parameters that may be used for BED calculations in individualized RT planning for HN cancers.Approach.Clinical dose constraint data for CFRT, HFRT and SBRT for 5 organs at risk (OARs) namely spinal cord, brainstem, brachial plexus, optic pathway, and esophagus obtained from literature were analyzed. These clinical data correspond to a particular endpoint. The linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) models were used to fit these clinical data and extract relevant model parameters (alpha/beta ratio, gamma/alpha,dTand BED) from the iso-effective curve. The dose constraints in terms of equivalent physical dose in 2 Gy-fraction (EQD2) were calculated using the obtained parameters.Main results.The LQ-L and LQ models fitted clinical data well from the CFRT to SBRT with the LQ-L representing a better fit for most of the OARs. The alpha/beta values for LQ-L (LQ) were found to be 2.72 (2.11) Gy, 0.55 (0.30) Gy, 2.82 (2.90) Gy, 6.57 (3.86) Gy, 5.38 (4.71) Gy, and the dose constraint EQD2 were 55.91 (54.90) Gy, 57.35 (56.79) Gy, 57.54 (56.35) Gy, 60.13 (59.72) Gy and 65.66 (64.50) Gy for spinal cord, optic pathway, brainstem, brachial plexus, and esophagus, respectively. Additional two LQ-L parametersdTwere 5.24 Gy, 5.09 Gy, 7.00 Gy, 5.23 Gy, and 6.16 Gy, and gamma/alpha were 7.91, 34.02, 8.67, 5.62 and 4.95.Significance.A practical process was developed to extract organ-specific radiobiological model parameters from clinical data. The obtained parameters can be used for biologically based radiation planning such as calculating dose constraints of different fractionation regimens.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radiocirugia , Humanos , Relación Dosis-Respuesta en la Radiación , Radiocirugia/métodos , Fraccionamiento de la Dosis de Radiación , Modelos Lineales , Neoplasias de Cabeza y Cuello/radioterapia
8.
BMJ Open ; 13(10): e073839, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848297

RESUMEN

BACKGROUND: Recent reports of the utilisation of pyrvinium pamoate (PP), an FDA-approved anti-helminth, have shown that it inhibits pancreatic ductal adenocarcinoma (PDAC) cell growth and proliferation in-vitro and in-vivo in preclinical models. Here, we report about an ongoing phase I open-label, single-arm, dose escalation clinical trial to determine the safety and tolerability of PP in PDAC surgical candidates. METHODS AND ANALYSIS: In a 3+3 dose design, PP is initiated 3 days prior to surgery. The first three patients will be treated with the initial dose of PP at 5 mg/kg orally for 3 days prior to surgery. Dose doubling will be continued to a reach a maximum of 20 mg/kg orally for 3 days, if the previous two dosages (5 mg/kg and 10 mg/kg) were tolerated. Dose-limiting toxicity grade≥3 is used as the primary endpoint. The pharmacokinetic and pharmacodynamic (PK/PD) profile of PP and bioavailability in humans will be used as the secondary objective. Each participant will be monitored weekly for a total of 30 days from the final dose of PP for any side effects. The purpose of this clinical trial is to examine whether PP is safe and tolerable in patients with pancreatic cancer, as well as assess the drug's PK/PD profile in plasma and fatty tissue. Potential implications include the utilisation of PP in a synergistic manner with chemotherapeutics for the treatment of pancreatic cancer. ETHICS AND DISSEMINATION: This study was approved by the Thomas Jefferson Institutional Review Board. The protocol number for this study is 20F.041 (Version 3.1 as of 27 October 2021). The data collected and analysed from this study will be used to present at local and national conferences, as well as, written into peer-reviewed manuscript publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT05055323.


Asunto(s)
Adenocarcinoma , Antihelmínticos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Reposicionamiento de Medicamentos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/cirugía , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/cirugía , Adenocarcinoma/cirugía , Antihelmínticos/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Neoplasias Pancreáticas
9.
JAMA Oncol ; 9(12): 1669-1677, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824137

RESUMEN

Importance: Patients with relapsed small cell lung cancer (SCLC), a high replication stress tumor, have poor prognoses and few therapeutic options. A phase 2 study showed antitumor activity with the addition of the ataxia telangiectasia and Rad3-related kinase inhibitor berzosertib to topotecan. Objective: To investigate whether the addition of berzosertib to topotecan improves clinical outcomes for patients with relapsed SCLC. Design, Setting, and Participants: Between December 1, 2019, and December 31, 2022, this open-label phase 2 randomized clinical trial recruited 60 patients with SCLC and relapse after 1 or more prior therapies from 16 US cancer centers. Patients previously treated with topotecan were not eligible. Interventions: Eligible patients were randomly assigned to receive topotecan alone (group 1), 1.25 mg/m2 intravenously on days 1 through 5, or with berzosertib (group 2), 210 mg/m2 intravenously on days 2 and 5, in 21-day cycles. Randomization was stratified by tumor sensitivity to first-line platinum-based chemotherapy. Main Outcomes and Measures: The primary end point was progression-free survival (PFS) in the intention-to-treat population. Secondary end points included overall survival (OS) in the overall population and among patients with platinum-sensitive or platinum-resistant tumors. The PFS and OS for each treatment group were estimated using the Kaplan-Meier method. The log-rank test was used to compare PFS and OS between the 2 groups, and Cox proportional hazards models were used to estimate the treatment hazard ratios (HRs) and the corresponding 2-sided 95% CI. Results: Of 60 patients (median [range] age, 59 [34-79] years; 33 [55%] male) included in this study, 20 were randomly assigned to receive topotecan alone and 40 to receive a combination of topotecan with berzosertib. After a median (IQR) follow-up of 21.3 (18.1-28.3) months, there was no difference in PFS between the 2 groups (median, 3.0 [95% CI, 1.2-5.1] months for group 1 vs 3.9 [95% CI, 2.8-4.6] months for group 2; HR, 0.80 [95% CI, 0.46-1.41]; P = .44). Overall survival was significantly longer with the combination therapy (5.4 [95% CI, 3.2-6.8] months vs 8.9 [95% CI, 4.8-11.4] months; HR, 0.53 [95% CI, 0.29-0.96], P = .03). Adverse event profiles were similar between the 2 groups (eg, grade 3 or 4 thrombocytopenia, 11 of 20 [55%] vs 20 of 40 [50%], and any grade nausea, 9 of 20 [45%] vs 14 of 40 [35%]). Conclusions and Relevance: In this randomized clinical trial, treatment with berzosertib plus topotecan did not improve PFS compared with topotecan therapy alone among patients with relapsed SCLC. However, the combination treatment significantly improved OS. Trial Registration: ClinicalTrials.gov Identifier: NCT03896503.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Masculino , Persona de Mediana Edad , Femenino , Carcinoma Pulmonar de Células Pequeñas/patología , Topotecan/efectos adversos , Neoplasias Pulmonares/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia
10.
EMBO Mol Med ; 15(8): e17313, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37491889

RESUMEN

Small-cell lung cancer (SCLC) is the most lethal type of lung cancer. Specifically, MYC-driven non-neuroendocrine SCLC is particularly resistant to standard therapies. Lurbinectedin was recently approved for the treatment of relapsed SCLC, but combinatorial approaches are needed to increase the depth and duration of responses to lurbinectedin. Using high-throughput screens, we found inhibitors of ataxia telangiectasia mutated and rad3 related (ATR) as the most effective agents for augmenting lurbinectedin efficacy. First-in-class ATR inhibitor berzosertib synergized with lurbinectedin in multiple SCLC cell lines, organoid, and in vivo models. Mechanistically, ATR inhibition abrogated S-phase arrest induced by lurbinectedin and forced cell cycle progression causing mitotic catastrophe and cell death. High CDKN1A/p21 expression was associated with decreased synergy due to G1 arrest, while increased levels of ERCC5/XPG were predictive of increased combination efficacy. Importantly, MYC-driven non-neuroendocrine tumors which are resistant to first-line therapies show reduced CDKN1A/p21 expression and increased ERCC5/XPG indicating they are primed for response to lurbinectedin-berzosertib combination. The combination is being assessed in a clinical trial NCT04802174.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Recurrencia Local de Neoplasia , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
11.
Micromachines (Basel) ; 14(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37421122

RESUMEN

The timely detection and diagnosis of diseases and accurate monitoring of specific genetic conditions require rapid and accurate separation, sorting, and direction of target cell types toward a sensor device surface. In that regard, cellular manipulation, separation, and sorting are progressively finding application potential within various bioassay applications such as medical disease diagnosis, pathogen detection, and medical testing. The aim of this paper is to present the design and development of a simple traveling wave ferro-microfluidic device and system rig purposed for the potential manipulation and magnetophoretic separation of cells in water-based ferrofluids. This paper details in full: (1) a method for tailoring cobalt ferrite nanoparticles for specific diameter size ranges (10-20 nm), (2) the development of a ferro-microfluidic device for potentially separating cells and magnetic nanoparticles, (3) the development of a water-based ferrofluid with magnetic nanoparticles and non-magnetic microparticles, and (4) the design and development of a system rig for producing the electric field within the ferro-microfluidic channel device for magnetizing and manipulating nonmagnetic particles in the ferro-microfluidic channel. The results reported in this work demonstrate a proof of concept for magnetophoretic manipulation and separation of magnetic and non-magnetic particles in a simple ferro-microfluidic device. This work is a design and proof-of-concept study. The design reported in this model is an improvement over existing magnetic excitation microfluidic system designs in that heat is efficiently removed from the circuit board to allow a range of input currents and frequencies to manipulate non-magnetic particles. Although this work did not analyze the separation of cells from magnetic particles, the results demonstrate that non-magnetic (surrogates for cellular materials) and magnetic entities can be separated and, in some cases, continuously pushed through the channel based on amperage, size, frequency, and electrode spacing. The results reported in this work establish that the developed ferro-microfluidic device may potentially be used as an effective platform for microparticle and cellular manipulation and sorting.

12.
Adv Radiat Oncol ; 8(4): 101206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152489

RESUMEN

Purpose: The changes in the recommended use of radiation therapy (RT) in the presence of expanding systemic cancer therapies and technological advances are poorly characterized. We sought to understand the recommended utilization of RT across a broad range of malignancies by examining National Comprehensive Cancer Network (NCCN) Guidelines. Methods and Materials: We conducted a comprehensive review and categorization of RT recommendations, with their subsequent supporting evidence categories, in 3 versions of NCCN Guidelines, specifically years 2000, 2009, and 2019. These NCCN Guidelines were individually examined for RT-specific recommendations among the 10 most common tumors. The presence of RT as a recommended modality was recorded for each tumor type in each guideline. Recommendation categories including Category 1, 2A, 2B, and 3 were tallied and compared with examine totals and percentage distributions in each tumor type. Results: A total of 3858 NCCN recommendations were individually reviewed. The presence of a recommendation inclusive of RT increased from incidence of 205 in the year 2000 to 992 in the year 2019 (383%). In the 2019 NCCN Guidelines, the most Category 1 RT recommendations were found within small cell lung (13%), non-small cell lung (5%), breast (5%), bladder (2%), rectal (2%), and non-Hodgkin lymphoma (1%). Pancreatic, uterine, prostate, melanoma, kidney, and colon cancer guidelines had no Category 1 RT recommendations. Rectal cancer had 31 (27%) preferred recommendations. The majority (89%) of 2019 RT recommendations were for initial therapy, and 9% were specific to salvage therapy. Tumor sites with the highest proportion of RT Category 1 evidence were small cell lung (29%), non-small cell lung (24%), and breast cancer (24%). Conclusions: The frequency of recommendations for using RT in NCCN Guidelines has increased by >300% in the past 20 years among the 10 most common malignancies. Consideration of the quality of evidence supporting these recommendations by tumor type is useful to identify specific malignancies in need of higher-level evidence supporting the role of RT.

13.
Adv Radiat Oncol ; 8(5): 101210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152892

RESUMEN

Purpose: Advancing equity, diversity, and inclusion in the physician workforce is essential to providing high-quality and culturally responsive patient care and has been shown to improve patient outcomes. To better characterize equity in the field of radiation oncology, we sought to describe the current academic radiation oncology workforce, including any contemporary differences in compensation and rank by gender and race/ethnicity. Methods and Materials: We conducted a retrospective cohort study using data from the Society of Chairs of Academic Radiation Oncology Programs (SCAROP) 2018 Financial Survey. Multivariable logistic regression models were used to identify factors associated with associate or full professor rank. Compensation was compared by gender and race/ethnicity overall and stratified by rank and was further analyzed using multivariable linear regression models. Results: Of the 858 academic radiation oncologists from 63 departments in the United States in the sample, 33.2% were female, 65.2% were White, 27.2% were Asian, and 7.6% were underrepresented in medicine (URiM). There were 44.0% assistant professors, 32.0% associate professors, and 22.8% full professors. Multivariable logistic regression analysis for factors associated with associate or full professor rank did not reveal statistically significant associations between gender or race/ethnicity with academic rank (odds ratio [OR], 0.86; 95% confidence interval [CI], 0.56-1.32; P = .48 for gender; OR, 0.81; 95% CI, 0.5-1.30; P = .37 for Asian vs White; and OR, 0.69; 95% CI, 0.31-1.55; P = .37 for URiM vs White), but CIs were wide due to sample size, and point estimates were <1. Similarly, multivariable linear regression analysis modeling the log relative total compensation did not detect statistically significant differences between radiation oncologists by gender (-1.7%; 95% CI, -6.8% to 3.4%; P = .51 for female vs male) or race/ethnicity (-1.6%; 95% CI, -7.3% to 4.0%; P = .57 for Asian vs White and -3.0%; 95% CI, -12.1% to 6.0%; P = .51 for URiM vs White). Conclusions: The low numbers of women and faculty with URiM race/ethnicity in this radiation oncology faculty sample limits the ability to compare career trajectory and compensation by those characteristics. Given that point estimates were <1, our findings do not contradict larger multispecialty studies that suggest an ongoing need to monitor equity.

14.
Clin Cancer Res ; 29(18): 3603-3611, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37227187

RESUMEN

PURPOSE: Despite promising preclinical studies, toxicities have precluded combinations of chemotherapy and DNA damage response (DDR) inhibitors. We hypothesized that tumor-targeted chemotherapy delivery might enable clinical translation of such combinations. PATIENTS AND METHODS: In a phase I trial, we combined sacituzumab govitecan, antibody-drug conjugate (ADC) that delivers topoisomerase-1 inhibitor SN-38 to tumors expressing Trop-2, with ataxia telangiectasia and Rad3-related (ATR) inhibitor berzosertib. Twelve patients were enrolled across three dose levels. RESULTS: Treatment was well tolerated, with improved safety over conventional chemotherapy-based combinations, allowing escalation to the highest dose. No dose-limiting toxicities or clinically relevant ≥grade 4 adverse events occurred. Tumor regressions were observed in 2 patients with neuroendocrine prostate cancer, and a patient with small cell lung cancer transformed from EGFR-mutant non-small cell lung cancer. CONCLUSIONS: ADC-based delivery of cytotoxic payloads represents a new paradigm to increase efficacy of DDR inhibitors. See related commentary by Berg and Choudhury, p. 3557.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoconjugados , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Camptotecina/efectos adversos , Camptotecina/administración & dosificación , Inmunoconjugados/efectos adversos , Inmunoconjugados/administración & dosificación
15.
Transl Oncol ; 32: 101662, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004490

RESUMEN

INTRODUCTION: Standard-of-care systemic chemotherapies for pancreatic ductal adenocarcinoma (PDAC) currently have limited clinical benefits, in addition to causing adverse side effects in many patients. One factor known to contribute to the poor chemotherapy response is the poor drug diffusion into PDAC tumors. Novel treatment methods are therefore drastically needed to improve targeted delivery of treatments. Here, we evaluated the efficacy of the 3DNA® Nanocarrier (3DNA) platform to direct delivery of therapeutics to PDAC tumors in vivo. MATERIALS AND METHODS: A panel of PDAC cell lines and a patient tissue microarray were screened for established tumor-specific proteins to identify targeting moieties for active targeting of the 3DNA. NRG mice with or without orthotopic MIA PaCa-2-luciferase PDAC tumors were treated intraperitoneally with 100 µl of fluorescently labeled 3DNA. RESULTS: Folic acid and transferrin receptors were significantly elevated in PDAC compared to normal pancreas. Accordingly, both folic acid- and transferrin-conjugated 3DNA treatments significantly increased delivery of 3DNA specifically to tumors in comparison to unconjugated 3DNA treatment. In the absence of tumors, there was an increased clearance of both folic acid-conjugated 3DNA and unconjugated 3DNA, compared to the clearance rate in tumor-bearing mice. Lastly, delivery of siLuciferase by folic acid-conjugated 3DNA in an orthotopic model of luciferase-expressing PDAC showed significant and prolonged suppression of luciferase protein expression and activity. CONCLUSION: Our study progresses the 3DNA technology as a reliable and effective treatment delivery platform for targeted therapeutic approaches in PDAC.

16.
Cancer Discov ; 13(4): 928-949, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36715552

RESUMEN

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. Oncogenic MYC amplifications drive SCLC heterogeneity, but the genetic mechanisms of MYC amplification and phenotypic plasticity, characterized by neuroendocrine and nonneuroendocrine cell states, are not known. Here, we integrate whole-genome sequencing, long-range optical mapping, single-cell DNA sequencing, and fluorescence in situ hybridization to find extrachromosomal DNA (ecDNA) as a primary source of SCLC oncogene amplifications and driver fusions. ecDNAs bring to proximity enhancer elements and oncogenes, creating SCLC transcription-amplifying units, driving exceptionally high MYC gene dosage. We demonstrate that cell-free nucleosome profiling can noninvasively detect ecDNA amplifications in plasma, facilitating its genome-wide interrogation in SCLC and other cancers. Altogether, our work provides the first comprehensive map of SCLC ecDNA and describes a new mechanism that governs MYC-driven SCLC heterogeneity. ecDNA-enabled transcriptional flexibility may explain the significantly worse survival outcomes of SCLC harboring complex ecDNA amplifications. SIGNIFICANCE: MYC drives SCLC progression, but the genetic basis of MYC-driven SCLC evolution is unknown. Using SCLC as a paradigm, we report how ecDNA amplifications function as MYC-amplifying units, fostering tumor plasticity and a high degree of tumor heterogeneity. This article is highlighted in the In This Issue feature, p. 799.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Oncogenes , ADN , Amplificación de Genes
17.
Med Phys ; 50(3): 1766-1778, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36434751

RESUMEN

PURPOSE: Deformable dose accumulation (DDA) has uncertainties which impede the implementation of DDA-based adaptive radiotherapy (ART) in clinic. The purpose of this study is to develop a multi-layer quality assurance (MLQA) program to evaluate uncertainties in DDA. METHODS: A computer program is developed to generate a pseudo-inverse displacement vector field (DVF) for each deformable image registration (DIR) performed in Accuray's PreciseART. The pseudo-inverse DVF is first used to calculate a pseudo-inverse consistency error (PICE) and then implemented in an energy and mass congruent mapping (EMCM) method to reconstruct a deformed dose. The PICE is taken as a metric to estimate DIR uncertainties. A pseudo-inverse dose agreement rate (PIDAR) is used to evaluate the consequence of the DIR uncertainties in DDA and the principle of energy conservation is used to validate the integrity of dose mappings. The developed MLQA program was tested using the data collected from five representative cancer patients treated with tomotherapy. RESULTS: DIRs were performed in PreciseART to generate primary DVFs for the five patients. The fidelity index and PICE of these DVFs on average are equal to 0.028 mm and 0.169 mm, respectively. With the criteria of 3 mm/3% and 5 mm/5%, the PIDARs of the PreciseART-reconstructed doses are 73.9 ± 4.4% and 87.2 ± 3.3%, respectively. The PreciseART and EMCM-based dose reconstructions have their deposited energy changed by 5.6 ± 3.9% and 2.6 ± 1.5% in five GTVs, and by 9.2 ± 7.8% and 4.7 ± 3.6% in 30 OARs, respectively. CONCLUSIONS: A pseudo-inverse map-based EMCM program has been developed to evaluate DIR and dose mapping uncertainties. This program could also be used as a sanity check tool for DDA-based ART.


Asunto(s)
Neoplasias , Radioterapia de Intensidad Modulada , Humanos , Incertidumbre , Algoritmos , Programas Informáticos , Planificación de la Radioterapia Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Dosificación Radioterapéutica
18.
Med Phys ; 50(4): 2474-2487, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36346034

RESUMEN

BACKGROUND: The widespread use of deformable dose accumulation (DDA) in adaptive radiotherapy (ART) has been limited due to the lack of clinically compatible methods to consider its related uncertainties. PURPOSE: We estimate dose reconstruction uncertainties in daily DDA during CT-guided radiotherapy of head-and-neck cancer (HNC). We project confidence intervals of cumulative dose-volume parameters to the parotids and determine threshold values to guide clinical decision-making in ART. METHODS: Doses from daily images (megavoltage CTs [MVCTs]) of 20 HNC patients treated with tomotherapy were reconstructed and accumulated in the planning CT (PCT) utilizing a commercial DDA algorithm (PreciseART, Accuray, Inc.). For each mapped fraction, we warped the planning contours to the MVCT. Dose-volume histograms (DVHs) calculated in the MVCT (with warped contour and native dose) and the PCT (with native contour and mapped dose) were compared; the observed inconsistencies were associated with dose reconstruction errors. We derived uncertainty bounds for the transferred dose to voxels within the structure of interest in the PCT. The confidence intervals of cumulative dose-volume parameters were mid-treatment projected and evaluated as predictors of the end of treatment cumulative metrics. The need for plan adaptation was tested by comparing the projected uncertainty bounds with the treatment constraint points. RESULTS: Among all cases, the uncertainty in mean values of daily dose distributions mapped to the reference parotid's contours averaged between 2.8% and 3.8% of typical single fraction planning values and less than 1% for the planning target volume (PTV) D95%. These daily inconsistencies were higher in the ipsilateral compared to the contralateral parotid and increased toward the end of treatment. The magnitude of the uncertainty bounds for the cumulative treatment mean dose, D50%, and V20 Gy to the parotids, and PTV D95% were on average 3.5%, 6.6%, 4.6%, and 0.4% of the planned or prescribed values, with confidence intervals of 97.1%-107.0%, 98.2%-110.4%, 95.6%-111.1%, and 98.2%-100.2% respectively. The uncertainty intervals projected at mid-treatment intersected with the end of treatment bounds in 82% of the parotid's metrics; half of them presented an overlapping percentage greater than 60%. In five patients, the cumulative mean doses were projected at mid-treatment to exceed the total treatment constraint point by at least 3%; this threshold was exceeded at the end of treatment in the five cases. Underdosing was projected in only one case; the cumulative PTV D95% at the end of treatment was below the clinical threshold. CONCLUSION: Uncertainty bounds were incorporated into the results of a commercial DDA tool. The cohort's statistics showed that the parotids' cumulative DVH metrics frequently exceeded the planning values if confidence intervals were included. Most of the uncertainty bounds of the PTV metrics were kept within the clinical thresholds. We verified that mid-treatment violation projections led to exceeding the constraint point at the end of the treatment. Based on a 3% threshold, approximately one fourth of the patients are expected to be replanned at mid-treatment for parotids sparing during HNC radiotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Incertidumbre , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia
19.
Biomedicines ; 10(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552005

RESUMEN

Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.

20.
Front Oncol ; 12: 1066191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561526

RESUMEN

Background: Pulsed low-dose-rate radiotherapy (pLDR) is a commonly used reirradiation technique for recurrent glioma, but its upfront use with temozolomide (TMZ) following primary resection of glioblastoma is currently under investigation. Because standard magnetic resonance imaging (MRI) has limitations in differentiating treatment effect from tumor progression in such applications, perfusion-weighted MRI (PWI) can be used to create fractional tumor burden (FTB) maps to spatially distinguish active tumor from treatment-related effect. Methods: We performed PWI prior to re-resection in four patients with glioblastoma who had undergone upfront pLDR concurrent with TMZ who had radiographic suspicion for tumor progression at a median of 3 months (0-5 months or 0-143 days) post-pLDR. The pathologic diagnosis was compared to retrospectively-generated FTB maps. Results: The median patient age was 55.5 years (50-60 years). All were male with IDH-wild type (n=4) and O6-methylguanine-DNA methyltransferase (MGMT) hypermethylated (n=1) molecular markers. Pathologic diagnosis revealed treatment effect (n=2), a mixture of viable tumor and treatment effect (n=1), or viable tumor (n=1). In 3 of 4 cases, FTB maps were indicative of lesion volumes being comprised predominantly of treatment effect with enhancing tumor volumes comprised of a median of 6.8% vascular tumor (6.4-16.4%). Conclusion: This case series provides insight into the radiographic response to upfront pLDR and TMZ and the role for FTB mapping to distinguish tumor progression from treatment effect prior to redo-surgery and within 20 weeks post-radiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...