Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745360

RESUMEN

A microdeletion on human chromosome 16p11.2 is one of the most common copy number variants associated with autism spectrum disorder and other neurodevelopmental disabilities. Arbaclofen, a GABA(B) receptor agonist, is a component of racemic baclofen, which is FDA-approved for treating spasticity, and has been shown to alleviate behavioral phenotypes, including recognition memory deficits, in animal models of 16p11.2 deletion. Given the lack of reproducibility sometimes observed in mouse behavioral studies, we brought together a consortium of four laboratories to study the effects of arbaclofen on behavior in three different mouse lines with deletions in the mouse region syntenic to human 16p11.2 to test the robustness of these findings. Arbaclofen rescued cognitive deficits seen in two 16p11.2 deletion mouse lines in traditional recognition memory paradigms. Using an unsupervised machine-learning approach to analyze behavior, one lab found that arbaclofen also rescued differences in exploratory behavior in the open field in 16p11.2 deletion mice. Arbaclofen was not sedating and had modest off-target behavioral effects at the doses tested. Our studies show that arbaclofen consistently rescues behavioral phenotypes in 16p11.2 deletion mice, providing support for clinical trials of arbaclofen in humans with this deletion.

2.
Learn Mem ; 27(9): 346-354, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817301

RESUMEN

Angelman syndrome is a rare neurodevelopmental disorder caused by a mutation in the maternal allele of the gene Ube3a The primary symptoms of Angelman syndrome are severe cognitive deficits, impaired motor functions, and speech disabilities. Analogous phenotypes have been detected in young adult Ube3a mice. Here, we investigate cognitive phenotypes of Ube3a mice as compared to wild-type littermate controls at an older adult age. Water maze spatial learning, swim speed, and rotarod motor coordination and balance were impaired at 6 mo of age, as predicted. Based on previous findings of reduced brain-derived neurotrophic factor in Ube3a mice, a novel therapeutic target, the TrkB agonist 7,8-DHF, was interrogated. Semichronic daily treatment with 7,8-DHF, 5 mg/kg i.p., did not significantly improve the impairments in performance during the acquisition of the water maze hidden platform location in Ube3a mice, after training with either massed or spaced trials, and had no effect on the swim speed and rotarod deficits. Robust behavioral phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Our results suggest that motor deficits could offer useful outcome measures for preclinical testing of many pharmacological targets, with the goal of reducing symptoms in adults with Angelman syndrome.


Asunto(s)
Síndrome de Angelman/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Flavonas/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Glicoproteínas de Membrana/agonistas , Actividad Motora/efectos de los fármacos , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Fenotipo , Proteínas Tirosina Quinasas , Ubiquitina-Proteína Ligasas
3.
Autism Res ; 12(3): 401-421, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30653853

RESUMEN

Autism spectrum disorder is a neurodevelopmental syndrome diagnosed primarily by persistent deficits in social interactions and communication, unusual sensory reactivity, motor stereotypies, repetitive behaviors, and restricted interests. No FDA-approved medical treatments exist for the diagnostic symptoms of autism. Here we interrogate multiple pharmacological targets in two distinct mouse models that incorporate well-replicated autism-relevant behavioral phenotypes. Compounds that modify inhibitory or excitatory neurotransmission were selected to address hypotheses based on previously published biological abnormalities in each model. Shank3B is a genetic model of a mutation found in autism and Phelan-McDermid syndrome, in which deficits in excitatory neurotransmission and synaptic plasticity have been reported. BTBR is an inbred strain model of forms of idiopathic autism in which reduced inhibitory neurotransmission and excessive mTOR signaling have been reported. The GABA-A receptor agonist gaboxadol significantly reduced repetitive self-grooming in three independent cohorts of BTBR. The TrkB receptor agonist 7,8-DHF improved spatial learning in Shank3B mice, and reversed aspects of social deficits in BTBR. CX546, a positive allosteric modulator of the glutamatergic AMPA receptor, and d-cycloserine, a partial agonist of the glycine site on the glutamatergic NMDA receptor, did not rescue aberrant behaviors in Shank3B mice. The mTOR inhibitor rapamycin did not ameliorate social deficits or repetitive behavior in BTBR mice. Comparison of positive and negative pharmacological outcomes, on multiple phenotypes, evaluated for replicability across independent cohorts, enhances the translational value of mouse models of autism for therapeutic discovery. GABA agonists present opportunities for personalized interventions to treat components of autism spectrum disorder. Autism Res 2019, 12: 401-421 © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. LAY SUMMARY: Many of the risk genes for autism impair synapses, the connections between nerve cells in the brain. A drug that reverses the synaptic effects of a mutation could offer a precision therapy. Combining pharmacological and behavioral therapies could reduce symptoms and improve the quality of life for people with autism. Here we report reductions in repetitive behavior by a GABA-A receptor agonist, gaboxadol, and improvements in social and cognitive behaviors by a TrkB receptor agonist, in mouse models of autism.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Isoxazoles/farmacología , Receptor trkB/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Aseo Animal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA