Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nanotechnology ; 35(22)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38373356

RESUMEN

In sodium-ion batteries (SIBs), TiO2or sodium titanates are discussed as cost-effective anode material. The use of ultrafine TiO2particles overcomes the effect of intrinsically low electronic and ionic conductivity that otherwise limits the electrochemical performance and thus its Na-ion storage capacity. Especially, TiO2nanoparticles integrated in a highly conductive, large surface-area, and stable graphene matrix can achieve an exceptional electrochemical rate performance, durability, and increase in capacity. We report the direct and scalable gas-phase synthesis of TiO2and graphene and their subsequent self-assembly to produce TiO2/graphene nanocomposites (TiO2/Gr). Transmission electron microscopy shows that the TiO2nanoparticles are uniformly distributed on the surface of the graphene nanosheets. TiO2/Gr nanocomposites with graphene loadings of 20 and 30 wt% were tested as anode in SIBs. With the outstanding electronic conductivity enhancement and a synergistic Na-ion storage effect at the interface of TiO2nanoparticles and graphene, nanocomposites with 30 wt% graphene exhibited particularly good electrochemical performance with a reversible capacity of 281 mAh g-1at 0.1 C, compared to pristine TiO2nanoparticles (155 mAh g-1). Moreover, the composite showed excellent high-rate performance of 158 mAh g-1at 20 C and a reversible capacity of 154 mAh g-1after 500 cycles at 10 C. Cyclic voltammetry showed that the Na-ion storage is dominated by surface and TiO2/Gr interface processes rather than slow, diffusion-controlled intercalation, explaining its outstanding rate performance. The synthesis route of these high-performing nanocomposites provides a highly promising strategy for the scalable production of advanced nanomaterials for SIBs.

2.
J Phys Chem A ; 127(11): 2564-2576, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36896577

RESUMEN

The product properties of mixed oxide nanoparticles generated via spray-flame synthesis depend on an intricate interplay of solvent and precursor chemistries in the processed solution. The effect of two different sets of metal precursors, acetates and nitrates, dissolved in a mixture of ethanol (35 Vol.%) and 2-ethylhexanoic acid (2-EHA, 65 Vol.%) was investigated for the synthesis of LaFexCo1-xO3 (x = 0.2, 0.3) perovskites. Regardless of the set of precursors, similar particle-size distributions (dp = 8-11 nm) were obtained and a few particles with sizes above 20 nm were identified with transmission electron microscopy (TEM) measurements. Using acetates as precursors, inhomogeneous La, Fe, and Co elemental distributions were obtained for all particle sizes according to energy dispersive X-ray (EDX) mappings, connected to the formation of multiple secondary phases such as oxygen-deficient La3(FexCo1-x)3O8 brownmillerite or La4(FexCo1-x)3O10 Ruddlesden-Popper (RP) structures besides the main trigonal perovskite phase. For samples synthesized from nitrates, inhomogeneous elemental distributions were observed for large particles only where La and Fe enrichment occurred in combination with the formation of a secondary La2(FexCo1-x)O4 RP phase. Such variations can be attributed to reactions in the solution prior to injection in the flame as well as precursor-dependent variations in in-flame reactions. Therefore, the precursor solutions were analyzed by temperature-dependent attenuated total reflection Fourier-transform infrared (ATR-FTIR) measurements. The acetate-based precursor solutions indicated the partial conversion of, mainly La and Fe, acetates to metal 2-ethylhexanoates. In the nitrate-based solutions, esterification of ethanol and 2-EHA played the most important role. The synthesized nanoparticle samples were characterized by BET (Brunauer, Emmett, Teller), FTIR, Mössbauer, and X-ray photoelectron spectroscopy (XPS). All samples were tested as oxygen evolution reaction (OER) catalysts, and similar electrocatalytic activities were recorded when evaluating the potential required to reach 10 mA/cm2 current density (∼1.61 V vs reversible hydrogen electrode (RHE)).

3.
Opt Express ; 31(3): 4978-5001, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785452

RESUMEN

In many high-temperature gas-phase nanoparticle synthesis processes, freshly nucleated particles are liquid and solidify during growth and cooling. This study presents an approach to determine the location of the liquid-to-solid phase transition and the volume fraction and number density of particles of both phases within a gas phase reactor. Spectrally-resolved line-of-sight attenuation (LOSA) measurements are applied to a silicon nanoparticle aerosol generated from monosilane in a microwave plasma reactor. A phantom-based analysis using particle number density, particle size, and temperature distribution from direct numerical simulation (DNS) of the reacting flow indicates that the contributions from the two particle phases can be decoupled under practical conditions, even with noisy data. The approach was applied to analyze spatially and spectrally resolved LOSA measurements from the hot gas flow downstream of the plasma zone where both solid and liquid silicon particles coexist. Extinction spectra were recorded along a line perpendicular to the flow direction by a spectrometer with an electron-multiplying charge-coupled device (EMCCD) camera, and two-dimensional projections were deconvolved to obtain radial extinction coefficient distributions of solid and liquid particles across the cross-section of the flow. Particle number densities of both particle phases were retrieved simultaneously based on the size-dependent extinction cross-sections of the nanoparticles. The particle-size distribution was determined via thermophoretic sampling at the same location with subsequent transmission electron microscopy (TEM) analysis. The particle temperature distribution was determined from the particle's thermal radiation based on line-of-sight emission (LOSE) measurements. The approach for phase-selective data analysis can be transferred to other materials aerosol systems as long as significant differences exist in extinction spectra for the related different particle classes.

4.
J Phys Chem A ; 127(5): 1259-1270, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36706050

RESUMEN

The influence of methanol and butanol on soot formation during the pyrolysis of a toluene primary reference fuel mixture with a research octane number (RON) of 91 (TPRF91) was investigated by conducting shock-tube experiments. The TPRF91 mixture contained 17 mol % n-heptane, 29 mol % iso-octane, and 54 mol % toluene. To assess the contribution of individual fuel compounds on soot formation during TPRF91 pyrolysis, the pyrolysis of argon diluted (1) toluene, (2) iso-octane, and (3) n-heptane mixtures were also studied. To enable the interpretation of the TPRF91 + methanol and TPRF91 + butanol experiments, the influence of both alcohols on soot formation during the thermal decomposition of toluene and iso-octane was also investigated in a separate series of measurements. Pyrolysis was monitored behind reflected shock waves at pressures between 2.1 and 4.2 bar and in the temperature range of 2060-2815 K. Laser extinction at 633 nm was used to determine the soot yield as a function of reaction time. For selected experiments, the temporal variation in temperature was also measured via time-resolved two-color CO absorption using two quantum-cascade lasers at 4.73 and 4.56 µm. It was found that soot formed during TPRF91 pyrolysis is primarily caused by the thermal decomposition of toluene. Adding methanol to TPRF91 results in a slight reduction of soot formation, whereas admixing butanol results in shifting soot formation to higher temperatures, but in that case, no overall soot reduction was observed during TPRF91 pyrolysis. Measured soot yields were compared to simulations based on a previous and an updated version of a detailed reaction mechanism from the CRECK modeling group [Nobili, A.; Cuoci, A.; Pejpichestakul, W.; Pelucchi, M.; Cavallotti, C.; Faravelli, T. Combust. Flame 2022; 10.1016/j.combustflame.2022.112073]. Rate-of-production analyses for reactions involving BINS at different experimental conditions were carried out. Although in the case of TPRF91 and toluene pyrolysis, no quantitative agreement was obtained between the experiment and simulation, the comparison nevertheless shows that the new version of the CRECK mechanism is a significant improvement over the previous one. In the case of n-heptane decomposition and iso-octane pyrolysis with and without alcohols, the updated reaction mechanism shows excellent agreement between simulation and measured soot yields.

5.
Opt Express ; 30(22): 40347-40356, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298969

RESUMEN

We demonstrate the first application of a Cr:CdSe laser for highly-sensitive multicomponent intracavity absorption spectroscopy around λ = 3.1-3.4 µm. A detection scheme based on an integrated recording of multiple (∼70) individual Cr:CdSe laser pulses after a single pump-pulse excitation is reported. The sensitivity of our system corresponds to an effective absorption path length of Leff ≈ 850 m. Exemplary measurements of atmospheric H2O and CH4, and additionally introduced gas-phase HCl, C2H4, or C2H6 are presented. The achieved noise-equivalent detection limits are in the ppb range. Possibilities for further sensitivity enhancement by up to a factor of 104 are discussed.

6.
Opt Express ; 30(9): 15524-15545, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473270

RESUMEN

Tomographic imaging using multi-simultaneous measurements (TIMes) of spontaneous light emission was performed on various operating conditions of the SpraySyn burner to analyse the flame morphology and its potential impact on spray flame pyrolysis. Concurrent instantaneous and time-averaged three-dimensional measurements of CH* chemiluminescence (flame front indicator) and atomic Na emission from NaCl dissolved in the injected combustible liquid (related to hot burnt products of the spray flame) were reconstructed employing a 29-camera setup. Overlapping regions of CH* and Na are presented using isosurface visualisation, local correlation coefficient fields and joint probability distributions. The instantaneous results reveal the complex nature of the reacting flow and regions of interaction between the flame front with the hot gases that originate from the spray stream. The averaged reconstructions show that the spray flames tested are slightly asymmetric near the burner exit but develop into symmetric bell-shaped distributions at downstream locations. The changes in the flame structure for different operating conditions are analysed in light of previous studies, helping in the better understanding of the nanoparticle synthesis process. Furthermore, the importance of using measurements from two views for significantly improved alignment of the burner based on the originally proposed procedure are discussed in light of the reconstructions. This is an important aspect since the SpraySyn is intended for use as a well-defined standardised burner for nanoparticle synthesis, which is being investigated numerically and experimentally across different research groups.

7.
Appl Phys B ; 128(4): 72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308124

RESUMEN

Laser-induced incandescence (LII) is a widely used combustion diagnostic for in situ measurements of soot primary particle sizes and volume fractions in flames, exhaust gases, and the atmosphere. Increasingly, however, it is applied to characterize engineered nanomaterials, driven by the increasing industrial relevance of these materials and the fundamental scientific insights that may be obtained from these measurements. This review describes the state of the art as well as open research challenges and new opportunities that arise from LII measurements on non-soot nanoparticles. An overview of the basic LII model, along with statistical techniques for inferring quantities-of-interest and associated uncertainties is provided, with a review of the application of LII to various classes of materials, including elemental particles, oxide and nitride materials, and non-soot carbonaceous materials, and core-shell particles. The paper concludes with a discussion of combined and complementary diagnostics, and an outlook of future research.

8.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35162031

RESUMEN

A fiber-coupled, compact, remotely operated laser absorption instrument is developed for CO, CO2, and H2O measurements in reactive flows at the elevated temperatures and pressures expected in gas turbine combustor test rigs with target pressures from 1-25 bar and temperatures of up to 2000 K. The optical engineering for solutions of the significant challenges from the ambient acoustic noise (~120 dB) and ambient test rig temperatures (60 °C) are discussed in detail. The sensor delivers wavelength-multiplexed light in a single optical fiber from a set of solid-state lasers ranging from diodes in the near-infrared (~1300 nm) to quantum cascade lasers in the mid-infrared (~4900 nm). Wavelength-multiplexing systems using a single optical fiber have not previously spanned such a wide range of laser wavelengths. Gas temperature is inferred from the ratio of two water vapor transitions. Here, the design of the sensor, the optical engineering required for simultaneous fiber delivery of a wide range of laser wavelengths on a single optical line-of-sight, the engineering required for sensor survival in the harsh ambient environment, and laboratory testing of sensor performance in the exhaust gas of a flat flame burner are presented.

9.
Appl Spectrosc ; 76(5): 569-579, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35081776

RESUMEN

In phase-selective laser-induced breakdown spectroscopy (PS-LIBS), gas-borne nanoparticles are irradiated with laser pulses (∼2.4 GW/cm2) resulting in breakdown of the nanoparticle phase but not the surrounding gas phase. In this work, the effect of excitation laser-pulse duration and energy on the intensity and duration of TiO2-nanoparticle PS-LIBS emission signal is investigated. Laser pulses from a frequency-doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (532 nm) are stretched from 8 ns (full width at half maximum, FWHM) up to ∼30 ns at fixed pulse energy using combinations of two optical cavities. The intensity of the titanium atomic emissions at around 500 nm wavelength increases by ∼60%, with the stretched pulse and emissions at around 482 nm, attributed to TiO, enhanced over 10 times. While the atomic emissions rise with the stretched laser pulse and decay around 20 ns after the end of the laser pulse, the TiO emissions reach their peak intensity at about 20 ns later and last longer. At low laser energy (i.e., 1 mJ/pulse, or 80 MW/cm2), the TiO emissions dominate, but their increase with laser energy is lower compared to the atomic emissions. The origin of the 482 nm emission is explored by examining several different aerosol setups, including Ti-O, Ti-N, and Ti-O-N from a spark particle generator and Ti-O-N-C-H aerosol from flame synthesis. The 482 nm emissions are attributed to electronically excited TiO, likely resulting from the reaction of excited titanium atoms with surrounding oxidizing (carbonaceous and/or radical) species. The effects of pulse length are attributed to the shift of absorption from the initial interaction with the particle to the prolonged interaction with the plasma through inverse bremsstrahlung.

10.
Chemistry ; 27(68): 16912-16923, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34590747

RESUMEN

La1-x Srx CoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray-flame synthesis and applied in the liquid-phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state-of-the-art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first-order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol-1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex-2-ene-1-hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.

11.
J Phys Chem A ; 125(39): 8699-8711, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559967

RESUMEN

Si-C-H-O-containing radicals are important intermediates during the combustion and pyrolysis of precursors applied for the gas-phase synthesis of silica nanoparticles. Despite the industrial importance of silica nanoparticles, a comprehensive thermodynamics database of organosilane species is still missing. This work presents thermochemical data of 91 Si-C-H-O radical species. Quantum-chemical calculations and isodesmic reaction schemes are used to determine the standard enthalpy of formation, entropy, and heat capacities covering the 298-2000 K temperature range. In addition, 90 group-additivity values (GAVs) are calculated, which cover all relevant group increments. A combinatorial approach is used to ensure that all possible group increments are considered. The theoretically calculated species are used as a training set to derive 90 GAVs of Si-C-H-O radical species for the first time. In addition, uncertainty contributions of GAVs were estimated. These uncertainty estimates also comprise GAVs that were previously derived to compute thermochemical data of stable Si-C-H species and radicals as well as stable Si-C-H-O compounds. Therefore, uncertainty contributions of GAVs for a whole set of 243 group increments used to predict thermochemical data of Si-organic species are reported.

12.
Opt Express ; 29(14): 21795-21809, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265959

RESUMEN

The distinct optical properties of solid and liquid silicon nanoparticles are exploited to determine the distribution of gas-borne solid and liquid particles in situ using line-of-sight attenuation measurements carried out across a microwave plasma reactor operated at 100 mbar. The ratio between liquid and solid particles detected downstream of the plasma varied with measurement location, microwave power, and flow rate. Temperatures of the liquid particles were pyrometrically-inferred using a spectroscopic model based on Drude theory. The phase-sensitive measurement supports the understanding of nanoparticle formation and interaction and thus the overall gas-phase synthesis process.

13.
Appl Opt ; 60(15): C98-C113, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143112

RESUMEN

The fluorescence spectra of dye solutions change their spectral signature with temperature. This effect is frequently used for temperature imaging in liquids and sprays based on two-color laser-induced fluorescence (2cLIF) measurements by simultaneously detecting the fluorescence intensity in two separate wavelength channels resulting in a temperature-sensitive ratio. In this work, we recorded temperature-dependent absorption and fluorescence spectra of solutions of five laser dyes (coumarin 152, coumarin 153, rhodamine B, pyrromethene 597, and DCM) dissolved in ethanol, a 35/65 vol.% mixture of ethanol/2-ethylhexanoic acid, ethanol/hexamethylsiloxane, o-xylene, and 1-butanol to investigate their potential as temperature tracers in evaporating and burning sprays. The dissolved tracers were excited at either 266, 355, and 532 nm (depending on the tracer) for temperatures between 296 and 393 K (depending on the solvent) and for concentrations ranging between 0.1 and 10 mg/l. Absorption and fluorescence spectra of the tracers were investigated for their temperature dependence, the magnitude of signal re-absorption, the impact of different solvents, and varying two-component solvent compositions. Based on the measured fluorescence spectra, the tracers were analyzed for their 2cLIF temperature sensitivity in the respective solvents. Coumarin 152 showed for single-component solvents the overall best spectroscopic properties for our specific measurement situation related to temperature imaging measurements in spray-flame synthesis of nanoparticles as demonstrated previously in ethanol spray flames [Exp. Fluids61, 77 (2020)10.1007/s00348-020-2909-9].

14.
Opt Express ; 29(8): 12033-12048, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984972

RESUMEN

We demonstrate an intracavity absorption spectroscopy system based on a broadband single-crystal pulsed Fe:ZnSe laser. The laser operates at room-temperature and is continuously tunable in the spectral range of 3.76-5.29 µm. The long-wavelength emission up to 5.29 µm is a record achievement for Fe:ZnSe lasers, to the best of our knowledge. The developed laser system is applied for measurements of gaseous absorption inside the laser resonator. We demonstrate sensitive detection of (i) CO2 isotopes in the atmosphere and in human breath, (ii) CO in breath (after cigarette smoking) and in the smoke of a smoldering paper, and (iii) N2O in a gas flow. The achieved detection limits are: 0.1 ppm for 12CO2 and 13CO2, 3 ppm for CO, and 1 ppm for N2O. The sensitivity of the current system is primarily limited by the short pump-pulse duration of 40 ns. Possibilities for sensitivity enhancement by up to a factor of 107 are discussed.

15.
Opt Express ; 29(6): 8387-8406, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820287

RESUMEN

In this study, emission and extinction spectroscopy were combined to in situ measure temperature and volume fraction distributions of liquid germanium nanoparticle gas-phase synthesized in an argon/hydrogen/germane flow through a microwave plasma. Emission of the hot particles and extinction against a continuous background were recorded by a spectrometer in the 380-703 nm and 230-556 nm ranges, respectively, selected based on the specific optical properties of the material. Absorption coefficients were deconvoluted from line-of-sight attenuation (LOSA) measurements by a least-square algorithm and then used to determine the local volume fraction distribution. The temperature field was derived from the line-of-sight emission (LOSE) spectra with the prior knowledge of absorption coefficients. A multi-wavelength reconstruction model was developed for the determination of the spatially-resolved distribution of the measured quantities assuming a stationary axisymmetric flow. Advantages of the method include experimental simplicity, low cost, and adaptability to up-scaled reactor sizes.

16.
Rev Sci Instrum ; 91(10): 105107, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33138609

RESUMEN

The interaction of fuel and lubricant droplets with gaseous fuel/air mixtures close to autoignition is relevant in the context of unwanted early autoignition in spark-ignition internal combustion (IC) engines. To study the influence of droplets on the ignition of fuel/air mixtures independent from the in-cylinder pressure/temperature history, the shock-tube technique in combination with an injection system was established, which enables the generation and injection of single droplets or droplet clusters of n-dodecane and lubricant base oil behind reflected shock waves at pressures and temperatures representative for the compression phase of IC engines. Injected droplets were imaged by high-repetition-rate laser-induced fluorescence. The ignition process was observed by imaging in the visible and UV simultaneously through the shock-tube end wall with a combination of color- and UV-sensitive high-repetition-rate cameras. It was found that the amount and composition of the injected liquid are important factors determining the extent of the interference with the ongoing autoignition of the premixed fuel/air bath gas. For a stoichiometric mixture of primary reference fuels (PRF95) in air, the droplets significantly accelerate ignition especially in the negative temperature coefficient regime at around 760 K. The comparison of the timing of local ignition and the occurrence of volumetric ignition indicates that only in cases where the surrounding gas is close to autoignition, the droplets can trigger early autoignition. This required temporal and spatial coincidence might explain the high level of randomness of early autoignition in engines.

17.
J Phys Chem A ; 123(32): 6813-6827, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31329437

RESUMEN

The unimolecular decomposition of diethyl ether (DEE; C2H5OC2H5) is considered to be initiated via a molecular elimination and a C-O and a C-C bond fission step: C2H5OC2H5 → C2H4 + C2H5OH (1), C2H5OC2H5 → C2H5 + C2H5O (2), and C2H5OC2H5 → CH3 + C2H5OCH2 (3). In this work, two shock-tube facilities were used to investigate these reactions via (a) time-resolved H-atom concentration measurements by H-ARAS (atomic resonance absorption spectrometry), (b) time-resolved DEE-concentration measurements by high repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS), and (c) product-composition measurements via gas chromatography/MS (GC/MS) after quenching the test gas. The experiments were conducted at temperatures ranging from 1054 to 1505 K and at pressures between 1.2 and 2.5 bar. Initial DEE mole fractions between 0.4 and 9300 ppm were used to perform the kinetics experiments by H-ARAS (0.4 ppm), GC/MS (200-500 ppm), and HRR-TOF-MS (7850-9300 ppm). The rate constants, ktotal (ktotal = k1 + k2 + k3) derived from the GC/MS and HRR-TOF-MS experiments agree well with each other and can be described by the Arrhenius expression, ktotal(1054-1467 K; 1.3-2.5 bar) = 1012.81±0.22 exp(-240.27 ± 5.11 kJ mol-1/RT) s-1. From the H-ARAS experiments, overall rate constants for the bond fission channels, k2+3 = k2 + k3 have been extracted. The k2+3 data can be well described by the Arrhenius equation, k2+3(1299-1505 K; 1.3-2.5 bar) = 1014.43±0.33 exp(-283.27 ± 8.78 kJ mol-1/RT) s-1. A master-equation analysis was performed using CCSD(T)/aug-cc-pvtz//B3LYP/aug-cc-pvtz and CASPT2/aug-cc-pvtz//B3LYP/aug-cc-pvtz molecular properties and energies for the three primary thermal decomposition processes in DEE. The derived experimental data is very well reproduced by the simulations with the mechanism of this work. With regard to the branching ratios between bond fissions and elimination channels, uncertainties remain.

18.
Phys Chem Chem Phys ; 21(27): 14562-14570, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31232408

RESUMEN

Photo-physical models that describe the pressure- and temperature-dependent fluorescence quantum yield of organic fluorescence tracers rely on an accurate prediction of the initial excited-state population, collision-dependent relaxation processes, and state-dependent relaxation processes. In case the initial excited-state population distribution reached after the laser excitation equals on average the thermal distribution, the fluorescence quantum yield becomes pressure independent. This initial distribution critically depends on the temperature-dependent ground-state population before excitation as well as the excitation wavelength. The ability to predict this behavior is a critical check for the validity of the existing photophysical models. The dependence of the effective fluorescence lifetime of anisole on the excitation wavelength (256-270 nm) was investigated at temperatures between 325 and 525 K for pressures between 1 and 4 bar. For each temperature, a unique excitation wavelength was found where the fluorescence lifetime is pressure-independent. The comparison of the experimental results with the predictions based on the established photophysical step-ladder models revealed a systematic underestimation of the required excitation photon energies for direct excitation into the thermalized level. An improved modeling approach based on quantum chemistry calculations for implementing simulated excitation spectra and state-dependent transition probabilities overcomes these limitations. Our results show for the example of anisole that the fluorescence step-ladder models that exist for aromatic fluorescence tracers must be modified to correctly predict the effect of the excitation wavelength.

19.
J Vasc Surg ; 70(6): 2005-2013, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31147123

RESUMEN

BACKGROUND: Fusion imaging is a tool for intraoperative three-dimensional (3D) guidance in endovascular aneurysm repair (EVAR). In many aortic centers, the registration for location is based on an intraoperative 3D dataset acquired by means of cone-beam computed tomography (3D-3D registration). Another registration method is based on two two-dimensional (2D) images (lateral and posteroanterior) acquired with the use of intraoperative fluoroscopy for registration with a computed tomographic angiogram (2D-3D registration). The aim of the present study was to compare 2D-3D registration with 3D-3D registration regarding noninferiority in accuracy and to describe radiation exposure and ease of use of both modalities. METHODS: From December 2014 to September 2015, 50 sequentially enrolled patients received EVAR with the use of fusion imaging using 2D-3D registration. No adjustments were made until the first angiography with inserted stent graft. The deviation of fusion imaging to the actual position of the lower renal artery compared with digital subtraction angiography was measured. A historic cohort of 101 patients treated with EVAR and fusion imaging with 3D-3D registration (3D-3D cohort) served as the control group for this study. RESULTS: Craniocaudal deviation did not differ significantly (4.6 ± 4.4 mm in the 2D-3D cohort vs 3.6 ± 3.9 mm in the 3D-3D cohort; P = .17). The difference of the means was 1.05 mm with a 95% confidence interval of -2.45 to 0.34 and a P value for the noninferiority test of .0249, indicating that 2D-3D registration was noninferior in terms of a margin of δ = 2.5 mm. 2D-3D registration was significantly faster with significantly less additional radiation necessary: 0.45 ± 0.28 vs 45.7 ± 9.1 Gy·cm2 in the 3D-3D cohort (P < .001); 2.3 ± 1.3 vs 5.3 ± 4.3 minutes in the 3D-3D cohort (P < .001). CONCLUSIONS: Fusion imaging during EVAR with the use of 2D-3D registration is feasible in routine EVAR. Our findings of two consecutive cohorts with the same clinical, hardware, and software setup used for the procedures underscore that the accuracy of 2D-3D registration is noninferior to that of a 3D-3D registration workflow, with advantages in terms of radiation exposure, intraoperative time demand, and ease of use.


Asunto(s)
Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/cirugía , Procedimientos Endovasculares , Imagen Multimodal , Anciano , Angiografía de Substracción Digital , Benchmarking , Prótesis Vascular , Angiografía por Tomografía Computarizada , Tomografía Computarizada de Haz Cónico , Femenino , Fluoroscopía , Humanos , Imagenología Tridimensional , Cuidados Intraoperatorios , Masculino , Exposición a la Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía Intervencional , Stents
20.
Opt Express ; 27(8): 11122-11136, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052961

RESUMEN

We present a broadband cw Cr4+:forsterite laser operating at room temperature with a lasing threshold of 0.8 W that is tunable in the spectral range from 7246 to 8361 cm-1 (1196-1380 nm). This laser is applied for highly sensitive measurements of gaseous absorption inside the cavity. The maximum sensitivity demonstrated in the experiment corresponds to an effective absorption path length of Leff = 2500 km. The spectral bandwidth of laser emission varies from 3 to 150 cm-1 depending on the laser pulse duration, enabling broadband multi-component absorption measurements. We demonstrate sensitive detection of various species (with estimated detection limits), such as H2O (25 ppt), O2 (3 ppm), CO2 (150 ppb), CH4 (2 ppb), HCl (6 ppb) and HF (2 ppt) using lab-scale absorption lengths of about one meter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...