Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(11): e3001871, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383605

RESUMEN

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/genética , Esparcimiento de Virus , Anticuerpos Bloqueadores
2.
Commun Biol ; 5(1): 1138, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302956

RESUMEN

SARS-CoV-2 and its emerging variants of concern remain a major threat for global health. Here we introduce an infection model based upon polarized human Alveolar Epithelial Lentivirus immortalized (hAELVi) cells grown at the air-liquid interface to estimate replication and epidemic potential of respiratory viruses in the human lower respiratory tract. hAELVI cultures are highly permissive for different human coronaviruses and seasonal influenza A virus and upregulate various mediators following virus infection. Our analysis revealed a significantly reduced capacity of SARS-CoV-2 Omicron BA.1 and BA.2 variants to propagate in this human model compared to earlier D614G and Delta variants, which extends early risk assessments from epidemiological and animal studies suggesting a reduced pathogenicity of Omicron.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Pulmón , Células Epiteliales
3.
Eur Respir J ; 60(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35728978

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.


Asunto(s)
COVID-19 , Gripe Humana , Adulto , Humanos , Enzima Convertidora de Angiotensina 2 , Pulmón/patología , Macrófagos Alveolares/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Tropismo Viral
4.
J Proteome Res ; 21(2): 459-469, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982558

RESUMEN

Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 infections are characterized by remarkable differences, including infectivity and case fatality rate. The underlying mechanisms are not well understood, illustrating major knowledge gaps of coronavirus biology. In this study, protein expression of the SARS-CoV- and SARS-CoV-2-infected human lung epithelial cell line Calu-3 was analyzed using data-independent acquisition-mass spectrometry. This resulted in a comprehensive map of infection-related proteome-wide expression changes in human cells covering the quantification of 7478 proteins across four time points. Most notably, the activation of interferon type-I response was observed, which is surprisingly absent in several proteome studies. The data reveal that SARS-CoV-2 triggers interferon-stimulated gene expression much stronger than SARS-CoV, which reflects the already described differences in interferon sensitivity. Potentially, this may be caused by the enhanced abundance of the viral M protein of SARS-CoV in comparison to SARS-CoV-2, which is a known inhibitor of type I interferon expression. This study expands the knowledge on the host response to SARS-CoV-2 infections on a global scale using an infection model, which seems to be well suited to analyze the innate immunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Células Epiteliales , Expresión Génica , Humanos , Inmunidad Innata , Pulmón , Proteómica , SARS-CoV-2
5.
Allergy ; 77(7): 2080-2089, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34820854

RESUMEN

BACKGROUND: The mRNA vaccine BNT162b2 (Comirnaty, BioNTech/Pfizer) and the vaccine candidate CVnCoV (Curevac) each encode a stabilized spike protein of SARS-CoV2 as antigen but differ with respect to the nature of the mRNA (modified versus unmodified nucleotides) and the mRNA amount (30 µg versus 12 µg RNA). This study characterizes antisera elicited by these two vaccines in comparison to convalescent sera. METHODS: Sera from BNT162b2 vaccinated healthcare workers, and sera from participants of a phase I trial vaccinated with 2, 4, 6, 8, or 12 µg CVnCoV and convalescent sera from hospitalized patients were analyzed by ELISA, neutralization tests, surface plasmon resonance (SPR), and peptide arrays. RESULTS: BNT162b2-elicited sera and convalescent sera have a higher titer of spike-RBD-specific antibodies and neutralizing antibodies as compared to the CVnCoV-elicited sera. For all analyzed sera a reduction in binding and neutralizing antibodies was found for the lineage B.1.351 variant of concern. SPR analyses revealed that the CVnCoV-elicited sera have a lower fraction of slow-dissociating antibodies. Accordingly, the CVnCoV sera almost fail to compete with the spike-ACE2 interaction. The significance of common VOC mutations K417N, E484K, or N501Y focused on linear epitopes was analyzed using a peptide array approach. The peptide arrays showed a strong difference between convalescent sera and vaccine-elicited sera. Specifically, the linear epitope at position N501 was affected by the mutation and elucidates the escape of viral variants to antibodies against this linear epitope. CONCLUSION: These data reveal differences in titer, neutralizing capacity, and affinity of the antibodies between BNT162b2- and CVnCoV-elicited sera, which could contribute to the apparent differences in vaccine efficacy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/terapia , Ensayos Clínicos Fase I como Asunto , Epítopos , Humanos , Inmunización Pasiva , Péptidos , ARN Mensajero , ARN Viral , Vacunas Sintéticas , Vacunas de ARNm , Sueroterapia para COVID-19
6.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34914922

RESUMEN

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/virología , Macrófagos/patología , Macrófagos/virología , SARS-CoV-2/fisiología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagen , Comunicación Celular , Estudios de Cohortes , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/genética , Células Madre Mesenquimatosas/patología , Fenotipo , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Tomografía Computarizada por Rayos X , Transcripción Genética
7.
Front Immunol ; 12: 732298, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745102

RESUMEN

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


Asunto(s)
Antígenos CD/metabolismo , Antígenos/administración & dosificación , Proteínas Fluorescentes Verdes/administración & dosificación , Células de Langerhans/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Animales , Antígenos/inmunología , Antígenos/metabolismo , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Inyecciones Intradérmicas , Células de Langerhans/inmunología , Ligandos , Miniaturización , Nanomedicina , Agujas , Unión Proteica , Transporte de Proteínas , Proteolisis , Células THP-1 , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/metabolismo
8.
J Am Chem Soc ; 143(45): 18977-18988, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34748320

RESUMEN

Dendritic cells (DC) are antigen-presenting cells coordinating the interplay of the innate and the adaptive immune response. The endocytic C-type lectin receptors DC-SIGN and Langerin display expression profiles restricted to distinct DC subtypes and have emerged as prime targets for next-generation immunotherapies and anti-infectives. Using heteromultivalent liposomes copresenting mannosides bearing aromatic aglycones with natural glycan ligands, we serendipitously discovered striking cooperativity effects for DC-SIGN+ but not for Langerin+ cell lines. Mechanistic investigations combining NMR spectroscopy with molecular docking and molecular dynamics simulations led to the identification of a secondary binding pocket for the glycomimetics. This pocket, located remotely of DC-SIGN's carbohydrate bindings site, can be leveraged by heteromultivalent avidity enhancement. We further present preliminary evidence that the aglycone allosterically activates glycan recognition and thereby contributes to DC-SIGN-specific cell targeting. Our findings have important implications for both translational and basic glycoscience, showcasing heteromultivalent targeting of DCs to improve specificity and supporting potential allosteric regulation of DC-SIGN and CLRs in general.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Antígenos CD/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/química , Línea Celular Tumoral , Humanos , Lectinas Tipo C/química , Ligandos , Liposomas/química , Liposomas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Manósidos/química , Manósidos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Receptores de Superficie Celular/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
9.
J Infect Dis ; 224(12): 2020-2024, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34651643

RESUMEN

BACKGROUND: The upper respiratory tract (URT) is the primary entry site for severe acute respiratory syndrome 2 (SARS-CoV-2) and other respiratory viruses, but its involvement in viral amplification and pathogenesis remains incompletely understood. METHODS: In this study, we investigated primary nasal epithelial cultures, as well as vital explanted tissues, to scrutinize the tropism of wild-type SARS-CoV-2 and the recently emerged B.1.1.7 variant. RESULTS: Our analyses revealed a widespread replication competence of SARS-CoV-2 in polarized nasal epithelium as well as in the examined URT and salivary gland tissues, which was also shared by the B.1.1.7 virus. CONCLUSIONS: In our analyses, we highlighted the active role of these anatomic sites in coronavirus disease 2019.


Asunto(s)
COVID-19/virología , Sistema Respiratorio/virología , Tropismo Viral , Replicación Viral , Humanos , Infecciones del Sistema Respiratorio , SARS-CoV-2 , Tráquea
10.
J Invest Dermatol ; 141(1): 84-94.e6, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522485

RESUMEN

Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-ß1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.


Asunto(s)
Células Dendríticas/inmunología , Células de Langerhans/inmunología , Activación de Linfocitos/inmunología , Monocitos/inmunología , Piel/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Células Dendríticas/patología , Humanos , Células de Langerhans/patología , Fenotipo , Piel/patología
12.
ACS Cent Sci ; 5(5): 808-820, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31139717

RESUMEN

Langerhans cells are a subset of dendritic cells residing in the epidermis of the human skin. As such, they are key mediators of immune regulation and have emerged as prime targets for novel transcutaneous cancer vaccines. Importantly, the induction of protective T cell immunity by these vaccines requires the efficient and specific delivery of both tumor-associated antigens and adjuvants. Langerhans cells uniquely express Langerin (CD207), an endocytic C-type lectin receptor. Here, we report the discovery of a specific, glycomimetic Langerin ligand employing a heparin-inspired design strategy and structural characterization by NMR spectroscopy and molecular docking. The conjugation of this glycomimetic to liposomes enabled the specific and efficient targeting of Langerhans cells in the human skin. We further demonstrate the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in Langerhans cell histiocytosis, caused by the abnormal proliferation of Langerin+ myeloid progenitor cells. Overall, our delivery platform provides superior versatility over antibody-based approaches and novel modalities to overcome current limitations of dendritic cell-targeted immuno- and chemotherapy.

13.
Biochemistry ; 58(21): 2576-2580, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31062587

RESUMEN

The skin is an attractive site for vaccination and harbors a dense network of Langerhans cells that are the prime target for antigen delivery approaches in the epidermis. While specific targeting of Langerhans cells has been shown to elicit the necessary T-cell response using antibody-based delivery approaches, the targeted administration of particulate antigens in the form of nanoparticle-based vaccine formulations has been challenging. We previously reported on a specific targeting ligand for human Langerin, a C-type lectin expressed on Langerhans cells. This ligand is presented on liposomes and renders them highly specific for the uptake by Langerhans cells. Here we show a detailed study of the uptake and intracellular routing of the particles in model cell lines by confocal and live cell imaging as well as flow cytometric assays. Liposomes are internalized into early endosomal compartments and accumulate in late endosomes and lysosomes, shortly followed by a release of the cargo. Furthermore, we show the encapsulation of protein antigens and their delivery to cell lines and primary human Langerhans cells. These data further support the applicability of the targeted liposomal particles for protein vaccine applications.


Asunto(s)
Antígenos CD/inmunología , Antígenos/inmunología , Sistemas de Liberación de Medicamentos/métodos , Células de Langerhans/metabolismo , Lectinas Tipo C/inmunología , Liposomas , Lectinas de Unión a Manosa/inmunología , Anticuerpos/inmunología , Presentación de Antígeno/inmunología , Antígenos/administración & dosificación , Endosomas/metabolismo , Células Epidérmicas/inmunología , Células Epidérmicas/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Células de Langerhans/inmunología , Activación de Linfocitos , Albúmina Sérica Bovina/administración & dosificación , Albúmina Sérica Bovina/inmunología , Piel/metabolismo , Linfocitos T/inmunología , Vacunación/métodos , Vacunas/inmunología
14.
ACS Chem Biol ; 13(12): 3229-3235, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30480432

RESUMEN

Fragment-based drug discovery is a powerful complement to conventional high-throughput screening, especially for difficult targets. Screening low-molecular-weight fragments usually requires highly sensitive biophysical methods, because of the generally low affinity of the identified ligands. Here, we developed a cell-based fragment screening assay (cellFy) that allows sensitive identification of fragment hits in a physiologically more relevant environment, in contrast to isolated target screenings in solution. For this, a fluorescently labeled multivalent reporter was employed, enabling direct measurement of displacement by low-molecular-weight fragments without requiring enzymatic reactions or receptor activation. We applied this technique to identify hits against two challenging targets of the C-type lectin receptor (CLR) family: Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN) and Langerin. Both receptors are involved in pathogen recognition and initiation of an immune response, which renders them attractive targets for immune modulation. Because of their shallow and hydrophilic primary binding site, hit identification for CLRs is challenging and druglike ligands for CLRs are sparse. Screening of a fragment library followed by hit validation identified several promising candidates for further fragment evolution for DC-SIGN. In addition, a multiplexed assay format was developed for simultaneous screening against multiple CLRs, allowing a selectivity counterscreening. Overall, this sensitive cell-based fragment screening assay provides a powerful tool for rapid identification of bioactive fragments, even for difficult targets.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Superficie/metabolismo , Moléculas de Adhesión Celular/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Línea Celular , Dextranos/metabolismo , Descubrimiento de Drogas , Citometría de Flujo/métodos , Humanos , Ligandos , Estructura Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
15.
Bioorg Med Chem ; 26(19): 5368-5377, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30344001

RESUMEN

We have employed genetically-encoded fragment-based discovery to identify novel glycopeptides with affinity for the dendritic cell receptor DC-SIGN. Starting from libraries of 108 mannose-conjugated peptides, we identified glycopeptides that exhibited up to a 650-fold increase in multivalent binding affinity for DC-SIGN, which is also preserved in cells. Monovalently, our most potent glycopeptides have a similar potency to a Man3 oligosaccharide, representing a 15-fold increase in activity compared to mannose. These compounds represent the first examples of glycopeptide ligands that target the CRD of DC-SIGN. The natural framework of glycopeptide conjugates and the simplicity of orthogonal conjugation to make these glycopeptides anticipates a promising future for development of DC-SIGN-targeting moieties.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Glicopéptidos/química , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Bacteriófago M13/genética , Bacteriófago M13/metabolismo , Moléculas de Adhesión Celular/química , Glicopéptidos/metabolismo , Peroxidasa de Rábano Silvestre/antagonistas & inhibidores , Peroxidasa de Rábano Silvestre/metabolismo , Lectinas Tipo C/química , Ligandos , Manosa/química , Manosa/metabolismo , Biblioteca de Péptidos , Unión Proteica , Receptores de Superficie Celular/química
16.
J Biol Chem ; 292(3): 862-871, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27903635

RESUMEN

The recognition of pathogen surface polysaccharides by glycan-binding proteins is a cornerstone of innate host defense. Many members of the C-type lectin receptor family serve as pattern recognition receptors facilitating pathogen uptake, antigen processing, and immunomodulation. Despite the high evolutionary pressure in host-pathogen interactions, it is still widely assumed that genetic homology conveys similar specificities. Here, we investigate the ligand specificities of the human and murine forms of the myeloid C-type lectin receptor langerin for simple and complex ligands augmented by structural insight into murine langerin. Although the two homologs share the same three-dimensional structure and recognize simple ligands identically, a screening of more than 300 bacterial polysaccharides revealed highly diverging avidity and selectivity for larger and more complex glycans. Structural and evolutionary conservation analysis identified a highly variable surface adjacent to the canonic binding site, potentially forming a secondary site of interaction for large glycans.


Asunto(s)
Antígenos CD/química , Antígenos de Superficie/química , Lectinas Tipo C/química , Lectinas de Unión a Manosa/química , Polisacáridos Bacterianos/química , Animales , Cristalografía por Rayos X , Humanos , Ratones , Dominios Proteicos , Receptores de Reconocimiento de Patrones , Especificidad de la Especie
17.
J Biomol Screen ; 20(2): 180-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25266565

RESUMEN

Bromodomain protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) protein family, acts as a central element in transcriptional elongation and plays essential roles in cell proliferation. Inhibition of BRD4 binding to acetylated histone tails via its two bromodomains, BD1 and BD2, with small-molecule inhibitors has been shown to be a valid strategy to prevent cancer growth. We have evaluated and established two novel assays that quantify the interaction of transfected BRD4 BD1 with chemical inhibitors inside cultured cells. Both methods are based on the principle of ligand-induced protein stabilization by which the binding of a small-molecule inhibitor stabilizes intracellular BRD4 BD1 and protects it from proteolytic degradation. We demonstrate the universal character of this principle by using two orthogonal, highly sensitive detection technologies for the quantification of BRD4 BD1 levels in cellular lysates: enzyme fragment complementation and time-resolved fluorescence resonance energy transfer (TR-FRET). Upon optimization of both assays to a miniaturized high-throughput format, the methods were validated by testing a set of small-molecule BET inhibitors and comparing the results with those from a cell-free binding assay and a biophysical thermal shift assay. In addition, point mutations were introduced into BRD4 BD1, and the corresponding mutants were characterized in the TR-FRET stabilization assay.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Ligandos , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular , Línea Celular , Fluoroinmunoensayo , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estabilidad Proteica/efectos de los fármacos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Biol Chem ; 289(13): 9304-19, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24497639

RESUMEN

Bromodomain protein 4 (BRD4) is a member of the bromodomain and extra-terminal domain (BET) protein family. It binds to acetylated histone tails via its tandem bromodomains BD1 and BD2 and forms a complex with the positive transcription elongation factor b, which controls phosphorylation of RNA polymerase II, ultimately leading to stimulation of transcription elongation. An essential role of BRD4 in cell proliferation and cancer growth has been reported in several recent studies. We analyzed the binding of BRD4 BD1 and BD2 to different partners and showed that the strongest interactions took place with di- and tetra-acetylated peptides derived from the histone 4 N-terminal tail. We also found that several histone 4 residues neighboring the acetylated lysines significantly influenced binding. We generated 10 different BRD4 BD1 mutants and analyzed their affinities to acetylated histone tails and to the BET inhibitor JQ1 using several complementary biochemical and biophysical methods. The impact of these mutations was confirmed in a cellular environment. Altogether, the results show that Trp-81, Tyr-97, Asn-140, and Met-149 play similarly important roles in the recognition of acetylated histones and JQ1. Pro-82, Leu-94, Asp-145, and Ile-146 have a more differentiated role, suggesting that different kinds of interactions take place and that resistance mutations compatible with BRD4 function are possible. Our study extends the knowledge on the contribution of individual BRD4 amino acids to histone and JQ1 binding and may help in the design of new BET antagonists with improved pharmacological properties.


Asunto(s)
Azepinas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Azepinas/farmacología , Proteínas de Ciclo Celular , Cromatina/metabolismo , Células HEK293 , Histonas/química , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...