Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
RSC Adv ; 13(26): 17667-17677, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312993

RESUMEN

The papain-like protease (PLpro) plays a critical role in SARS-CoV-2 (SCoV-2) pathogenesis and is essential for viral replication and for allowing the virus to evade the host immune response. Inhibitors of PLpro have great therapeutic potential, however, developing them has been challenging due to PLpro's restricted substrate binding pocket. In this report, we screened a 115 000-compound library for PLpro inhibitors and identified a new pharmacophore, based on a mercapto-pyrimidine fragment that is a reversible covalent inhibitor (RCI) of PLpro and inhibits viral replication in cells. Compound 5 had an IC50 of 5.1 µM for PLpro inhibition and hit optimization yielded a derivative with increased potency (IC50 0.85 µM, 6-fold higher). Activity based profiling of compound 5 demonstrated that it reacts with PLpro cysteines. We show here that compound 5 represents a new class of RCIs, which undergo an addition elimination reaction with cysteines in their target proteins. We further show that their reversibility is catalyzed by exogenous thiols and is dependent on the size of the incoming thiol. In contrast, traditional RCIs are all based upon the Michael addition reaction mechanism and their reversibility is base-catalyzed. We identify a new class of RCIs that introduces a more reactive warhead with a pronounced selectivity profile based on thiol ligand size. This could allow the expansion of RCI modality use towards a larger group of proteins important for human disease.

3.
Nature ; 617(7962): 835-841, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37198487

RESUMEN

Cellular processes are the product of interactions between biomolecules, which associate to form biologically active complexes1. These interactions are mediated by intermolecular contacts, which if disrupted, lead to alterations in cell physiology. Nevertheless, the formation of intermolecular contacts nearly universally requires changes in the conformations of the interacting biomolecules. As a result, binding affinity and cellular activity crucially depend both on the strength of the contacts and on the inherent propensities to form binding-competent conformational states2,3. Thus, conformational penalties are ubiquitous in biology and must be known in order to quantitatively model binding energetics for protein and nucleic acid interactions4,5. However, conceptual and technological limitations have hindered our ability to dissect and quantitatively measure how conformational propensities affect cellular activity. Here we systematically altered and determined the propensities for forming the protein-bound conformation of HIV-1 TAR RNA. These propensities quantitatively predicted the binding affinities of TAR to the RNA-binding region of the Tat protein and predicted the extent of HIV-1 Tat-dependent transactivation in cells. Our results establish the role of ensemble-based conformational propensities in cellular activity and reveal an example of a cellular process driven by an exceptionally rare and short-lived RNA conformational state.


Asunto(s)
Duplicado del Terminal Largo de VIH , VIH-1 , Conformación de Ácido Nucleico , ARN Viral , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Duplicado del Terminal Largo de VIH/genética , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/genética , VIH-1/metabolismo
4.
RSC Adv ; 13(16): 10636-10641, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37025664

RESUMEN

Covalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-2 have great potential as antivirals, but their non-specific reactivity with thiols has limited their development. In this report, we performed an 8000 molecule electrophile screen against PLpro and identified an α-chloro amide fragment, termed compound 1, which inhibited SARS-CoV-2 replication in cells, and also had low non-specific reactivity with thiols. Compound 1 covalently reacts with the active site cysteine of PLpro, and had an IC50 of 18 µM for PLpro inhibition. Compound 1 also had low non-specific reactivity with thiols and reacted with glutathione 1-2 orders of magnitude slower than other commonly used electrophilic warheads. Finally, compound 1 had low toxicity in cells and mice and has a molecular weight of only 247 daltons and consequently has great potential for further optimization. Collectively, these results demonstrate that compound 1 is a promising lead fragment for future PLpro drug discovery campaigns.

5.
Nat Commun ; 13(1): 5282, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075902

RESUMEN

Enteroviruses cause a number of medically relevant and widespread human diseases with no approved antiviral therapies currently available. Host-directed therapies present an enticing option for this diverse genus of viruses. We have previously identified the actin histidine methyltransferase SETD3 as a critical host factor physically interacting with the viral protease 2A. Here, we report the 3.5 Å cryo-EM structure of SETD3 interacting with coxsackievirus B3 2A at two distinct interfaces, including the substrate-binding surface within the SET domain. Structure-function analysis revealed that mutations of key residues in the SET domain resulted in severely reduced binding to 2A and complete protection from enteroviral infection. Our findings provide insight into the molecular basis of the SETD3-2A interaction and a framework for the rational design of host-directed therapeutics against enteroviruses.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Antígenos Virales/metabolismo , Endopeptidasas/metabolismo , Enterovirus/genética , Histona Metiltransferasas/metabolismo , Humanos , Péptido Hidrolasas/metabolismo
6.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33991487

RESUMEN

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodos
7.
bioRxiv ; 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34013269

RESUMEN

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

8.
Res Sq ; 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34031651

RESUMEN

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

9.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853786

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Asunto(s)
Dominio Catalítico/fisiología , Unión Proteica/fisiología , Proteínas no Estructurales Virales/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Tratamiento Farmacológico de COVID-19
10.
medRxiv ; 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33758899

RESUMEN

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged around May 2020 and increased from 0% to >50% of sequenced cases from September 1, 2020 to January 29, 2021, exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating strains. The variant carries 3 mutations in the spike protein, including an L452R substitution. Our analyses revealed 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation found in the B.1.1.7, B.1.351, and P.1 variants. Antibody neutralization assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California associated with decreased antibody neutralization warrants further investigation.

11.
bioRxiv ; 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33269349

RESUMEN

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

12.
Proc Natl Acad Sci U S A ; 115(51): 12973-12978, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514815

RESUMEN

Promoter-proximal pausing by RNA polymerase II (Pol II) is a key regulatory step in human immunodeficiency virus-1 (HIV-1) transcription and thus in the reversal of HIV latency. By binding to the nascent transactivating response region (TAR) RNA, HIV-1 Tat recruits the human super elongation complex (SEC) to the promoter and releases paused Pol II. Structural studies of TAR interactions have been largely focused on interactions between the TAR bulge and the arginine-rich motif (ARM) of Tat. Here, the crystal structure of the TAR loop in complex with Tat and the SEC core was determined at a 3.5-Å resolution. The bound TAR loop is stabilized by cross-loop hydrogen bonds. It makes structure-specific contacts with the side chains of the Cyclin T1 Tat-TAR recognition motif (TRM) and the zinc-coordinating loop of Tat. The TAR loop phosphate backbone forms electrostatic and VDW interactions with positively charged side chains of the CycT1 TRM. Mutational analysis showed that these interactions contribute importantly to binding affinity. The Tat ARM was present in the crystallized construct; however, it was not visualized in the electron density, and the TAR bulge was not formed in the RNA construct used in crystallization. Binding assays showed that TAR bulge-Tat ARM interactions contribute less to TAR binding affinity than TAR loop interactions with the CycT1 TRM and Tat core. Thus, the TAR loop evolved to make high-affinity interactions with the TRM while Tat has three roles: scaffolding and stabilizing the TRM, making specific interactions through its zinc-coordinating loop, and making electrostatic interactions through its ARM.


Asunto(s)
Duplicado del Terminal Largo de VIH , VIH-1/genética , ARN Polimerasa II/fisiología , Elongación de la Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Sitios de Unión , Cristalografía por Rayos X , Regulación Viral de la Expresión Génica , Modelos Moleculares , Regiones Promotoras Genéticas , Transcripción Genética
13.
Anal Chem ; 89(8): 4550-4558, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28322550

RESUMEN

The more than 500 protein kinases comprising the human kinome catalyze hundreds of thousands of phosphorylation events to regulate a diversity of cellular functions; however, the extended substrate specificity is still unknown for many of these kinases. We report here a method for quantitatively describing kinase substrate specificity using an unbiased peptide library-based approach with direct measurement of phosphorylation by tandem liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide sequencing (multiplex substrate profiling by mass spectrometry, MSP-MS). This method can be deployed with as low as 10 nM enzyme to determine activity against S/T/Y-containing peptides; additionally, label-free quantitation is used to ascertain catalytic efficiency values for individual peptide substrates in the multiplex assay. Using this approach we developed quantitative motifs for a selection of kinases from each branch of the kinome, with and without known substrates, highlighting the applicability of the method. The sensitivity of this approach is evidenced by its ability to detect phosphorylation events from nanogram quantities of immunoprecipitated material, which allows for wider applicability of this method. To increase the information content of the quantitative kinase motifs, a sublibrary approach was used to expand the testable sequence space within a peptide library of approximately 100 members for CDK1, CDK7, and CDK9. Kinetic analysis of the HIV-1 Tat (transactivator of transcription)-positive transcription elongation factor b (P-TEFb) interaction allowed for localization of the P-TEFb phosphorylation site as well as characterization of the stimulatory effect of Tat on P-TEFb catalytic efficiency.


Asunto(s)
Fosfopéptidos/análisis , Proteínas Quinasas/metabolismo , Espectrometría de Masas en Tándem , Secuencias de Aminoácidos , Cromatografía Líquida de Alta Presión , Quinasa 9 Dependiente de la Ciclina/metabolismo , VIH-1/metabolismo , Humanos , Cinética , Biblioteca de Péptidos , Fosfopéptidos/química , Fosforilación , Factor B de Elongación Transcripcional Positiva/química , Factor B de Elongación Transcripcional Positiva/metabolismo , Especificidad por Sustrato , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
14.
Nat Commun ; 8: 14076, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134250

RESUMEN

The intrinsically disordered scaffold proteins AFF1/4 and the transcription elongation factors ELL1/2 are core components of the super elongation complex required for HIV-1 proviral transcription. Here we report the 2.0-Å resolution crystal structure of the human ELL2 C-terminal domain bound to its 50-residue binding site on AFF4, the ELLBow. The ELL2 domain has the same arch-shaped fold as the tight junction protein occludin. The ELLBow consists of an N-terminal helix followed by an extended hairpin that we refer to as the elbow joint, and occupies most of the concave surface of ELL2. This surface is important for the ability of ELL2 to promote HIV-1 Tat-mediated proviral transcription. The AFF4-ELL2 interface is imperfectly packed, leaving a cavity suggestive of a potential binding site for transcription-promoting small molecules.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , VIH-1/fisiología , Provirus/fisiología , Proteínas Represoras/química , Elongación de la Transcripción Genética/fisiología , Factores de Elongación Transcripcional/química , Síndrome de Inmunodeficiencia Adquirida/virología , Sitios de Unión/genética , Sistemas CRISPR-Cas , Cristalografía por Rayos X , Regulación Viral de la Expresión Génica , Técnicas de Inactivación de Genes , VIH-1/patogenicidad , Células HeLa , Humanos , Células Jurkat , Mutagénesis , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Activación Viral/genética , Latencia del Virus/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
15.
Elife ; 52016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731797

RESUMEN

HIV-1 Tat hijacks the human superelongation complex (SEC) to promote proviral transcription. Here we report the 5.9 Å structure of HIV-1 TAR in complex with HIV-1 Tat and human AFF4, CDK9, and CycT1. The TAR central loop contacts the CycT1 Tat-TAR recognition motif (TRM) and the second Tat Zn2+-binding loop. Hydrogen-deuterium exchange (HDX) shows that AFF4 helix 2 is stabilized in the TAR complex despite not touching the RNA, explaining how it enhances TAR binding to the SEC 50-fold. RNA SHAPE and SAXS data were used to help model the extended (Tat Arginine-Rich Motif) ARM, which enters the TAR major groove between the bulge and the central loop. The structure and functional assays collectively support an integrative structure and a bipartite binding model, wherein the TAR central loop engages the CycT1 TRM and compact core of Tat, while the TAR major groove interacts with the extended Tat ARM.


Asunto(s)
Ciclina T/química , Quinasa 9 Dependiente de la Ciclina/química , ADN Viral/química , Duplicado del Terminal Largo de VIH , Proteínas Represoras/química , Factores de Elongación Transcripcional/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , ADN Viral/metabolismo , Medición de Intercambio de Deuterio , VIH-1/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Provirus/genética , Proteínas Represoras/metabolismo , Dispersión del Ángulo Pequeño , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
16.
Nucleic Acids Res ; 43(12): 5868-79, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26007649

RESUMEN

The AF4/FMR2 proteins AFF1 and AFF4 act as a scaffold to assemble the Super Elongation Complex (SEC) that strongly activates transcriptional elongation of HIV-1 and cellular genes. Although they can dimerize, it is unclear whether the dimers exist and function within a SEC in vivo. Furthermore, it is unknown whether AFF1 and AFF4 function similarly in mediating SEC-dependent activation of diverse genes. Providing answers to these questions, our current study shows that AFF1 and AFF4 reside in separate SECs that display largely distinct gene target specificities. While the AFF1-SEC is more potent in supporting HIV-1 transactivation by the viral Tat protein, the AFF4-SEC is more important for HSP70 induction upon heat shock. The functional difference between AFF1 and AFF4 in Tat-transactivation has been traced to a single amino acid variation between the two proteins, which causes them to enhance the affinity of Tat for P-TEFb, a key SEC component, with different efficiency. Finally, genome-wide analysis confirms that the genes regulated by AFF1-SEC and AFF4-SEC are largely non-overlapping and perform distinct functions. Thus, the SEC represents a family of related complexes that exist to increase the regulatory diversity and gene control options during transactivation of diverse cellular and viral genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Proteínas HSP70 de Choque Térmico/biosíntesis , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Mutación Puntual , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Elongación de la Transcripción Genética , Factores de Elongación Transcripcional
17.
Elife ; 3: e02375, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24843025

RESUMEN

Superelongation complexes (SECs) are essential for transcription elongation of many human genes, including the integrated HIV-1 genome. At the HIV-1 promoter, the viral Tat protein binds simultaneously to the nascent TAR RNA and the CycT1 subunit of the P-TEFb kinase in a SEC. To understand the preferential recruitment of SECs by Tat and TAR, we determined the crystal structure of a quaternary complex containing Tat, P-TEFb, and the SEC scaffold, AFF4. Tat and AFF4 fold on the surface of CycT1 and interact directly. Interface mutations in the AFF4 homolog AFF1 reduced Tat-AFF1 affinity in vivo and Tat-dependent transcription from the HIV promoter. AFF4 binding in the presence of Tat partially orders the CycT1 Tat-TAR recognition motif and increases the affinity of Tat-P-TEFb for TAR 30-fold. These studies indicate that AFF4 acts as a two-step filter to increase the selectivity of Tat and TAR for SECs over P-TEFb alone.DOI: http://dx.doi.org/10.7554/eLife.02375.001.


Asunto(s)
Regulación Viral de la Expresión Génica , Productos del Gen tat/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , Factor B de Elongación Transcripcional Positiva/genética , Proteínas Virales/genética , Productos del Gen tat/metabolismo , Genoma Viral , Humanos , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Conformación Proteica , ARN Viral/genética , ARN Viral/aislamiento & purificación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Elongación Transcripcional , Proteínas Virales/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(1): E15-24, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367103

RESUMEN

The positive transcription elongation factor b (P-TEFb) stimulates RNA polymerase elongation by inducing the transition of promoter proximally paused polymerase II into a productively elongating state. P-TEFb itself is regulated by reversible association with various transcription factors/cofactors to form several multisubunit complexes [e.g., the 7SK small nuclear ribonucleoprotein particle (7SK snRNP), the super elongation complexes (SECs), and the bromodomain protein 4 (Brd4)-P-TEFb complex] that constitute a P-TEFb network controlling cellular and HIV transcription. These complexes have been thought to share no components other than the core P-TEFb subunits cyclin-dependent kinase 9 (CDK9) and cyclin T (CycT, T1, T2a, and T2b). Here we show that the AF4/FMR2 family member 1 (AFF1) is bound to CDK9-CycT and is present in all major P-TEFb complexes and that the tripartite CDK9-CycT-AFF1 complex is transferred as a single unit within the P-TEFb network. By increasing the affinity of the HIV-encoded transactivating (Tat) protein for CycT1, AFF1 facilitates Tat's extraction of P-TEFb from 7SK snRNP and the formation of Tat-SECs for HIV transcription. Our data identify AFF1 as a ubiquitous P-TEFb partner and demonstrate that full Tat transactivation requires the complete SEC.


Asunto(s)
Ciclina T/química , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Factor B de Elongación Transcripcional Positiva/química , Ribonucleoproteínas Nucleares Pequeñas/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Alanina/genética , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Quinasa 9 Dependiente de la Ciclina/química , Células HeLa , Humanos , Proteínas Nucleares/química , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/química , Activación Transcripcional , Factores de Elongación Transcripcional
19.
Elife ; 2: e00327, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23471103

RESUMEN

Human positive transcription elongation factor b (P-TEFb) phosphorylates RNA polymerase II and regulatory proteins to trigger elongation of many gene transcripts. The HIV-1 Tat protein selectively recruits P-TEFb as part of a super elongation complex (SEC) organized on a flexible AFF1 or AFF4 scaffold. To understand this specificity and determine if scaffold binding alters P-TEFb conformation, we determined the structure of a tripartite complex containing the recognition regions of P-TEFb and AFF4. AFF4 meanders over the surface of the P-TEFb cyclin T1 (CycT1) subunit but makes no stable contacts with the CDK9 kinase subunit. Interface mutations reduced CycT1 binding and AFF4-dependent transcription. AFF4 is positioned to make unexpected direct contacts with HIV Tat, and Tat enhances P-TEFb affinity for AFF4. These studies define the mechanism of scaffold recognition by P-TEFb and reveal an unanticipated intersubunit pocket on the AFF4 SEC that potentially represents a target for therapeutic intervention against HIV/AIDS. DOI:http://dx.doi.org/10.7554/eLife.00327.001.


Asunto(s)
VIH-1/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Regulación Viral de la Expresión Génica , VIH-1/genética , VIH-1/crecimiento & desarrollo , Humanos , Modelos Moleculares , Factor B de Elongación Transcripcional Positiva/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Elongación de la Transcripción Genética , Factores de Elongación Transcripcional , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química
20.
Proc Natl Acad Sci U S A ; 110(2): E123-31, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23251033

RESUMEN

The HIV-1 Tat protein stimulates viral gene expression by recruiting human transcription elongation complexes containing P-TEFb, AFF4, ELL2, and ENL or AF9 to the viral promoter, but the molecular organization of these complexes remains unknown. To establish the overall architecture of the HIV-1 Tat elongation complex, we mapped the binding sites that mediate complex assembly in vitro and in vivo. The AFF4 protein emerges as the central scaffold that recruits other factors through direct interactions with short hydrophobic regions along its structurally disordered axis. Direct binding partners CycT1, ELL2, and ENL or AF9 act as bridging components that link this complex to two major elongation factors, P-TEFb and the PAF complex. The unique scaffolding properties of AFF4 allow dynamic and flexible assembly of multiple elongation factors and connect the components not only to each other but also to a larger network of transcriptional regulators.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , VIH-1 , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Factores de Elongación Transcripcional/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Sitios de Unión/genética , Western Blotting , Dicroismo Circular , Ciclina T/metabolismo , Electroforesis , Escherichia coli , Células HeLa , Humanos , Inmunoprecipitación , Luciferasas , Complejos Multiproteicos/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/genética , Factores de Elongación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA