Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 459: 132312, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37604033

RESUMEN

Elevated non-volatile dissolved organic carbon (NVDOC) concentrations in groundwater (GW) monitoring wells under oil-contaminated hydrophobic soils originating from a pipeline rupture at the National Crude Oil Spill & Natural Attenuation Research Site near Bemidji, MN are documented. We hypothesized the elevated NVDOC is comprised of water-soluble photooxidation products transported from the surface to the aquifer. We use field and laboratory samples in combination with complementary analytical methods to test this hypothesis and determine the biological response to these products. Observations from optical spectroscopy and ultrahigh-resolution mass spectrometry reveal a significant correlation between the chemical composition of NVDOC leached from photochemically weathered soils and GW monitoring wells with high NVDOC concentrations measured in the aquifer beneath the contaminated soil. Conversely, the chemical composition from the uncontaminated soil photoleachate matches the NVDOC observed in the uncontaminated wells. Contaminated GW and photodissolution leachates from contaminated soil activated biological targets indicative of xenobiotic metabolism and exhibited potential for adverse effects. Newly formed hydrocarbon oxidation products (HOPs) from fresh oil could be distinguished from those downgradient. This study illustrates another pathway for dissolved HOPs to infiltrate GW and potentially affect human health and the environment.


Asunto(s)
Agua Subterránea , Petróleo , Humanos , Materia Orgánica Disuelta , Hidrocarburos , Receptores Citoplasmáticos y Nucleares , Suelo
2.
Chemosphere ; 338: 139403, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37422220

RESUMEN

In recent years, ultrahigh performance liquid chromatography Fourier transform mass spectrometry (LC/FT-MS) based non-targeted screening (NTS) methods have become increasingly popular for comprehensive analysis of complex organic mixtures. However, applying these methods for environmental complex mixture analysis is challenging due to the extreme complexity of natural samples and a lack of standard samples or surrogates for environmental complex mixtures. Furthermore, limited molecular markers in the databases and insufficient data processing software workflows make the application of these methods more challenging for environmental complex mixtures. In this work, we implement a new NTS data processing workflow to process data collected from ultrahigh performance liquid chromatography and Fourier transform Orbitrap Elite Mass Spectrometry (LC/FT-MS) by combining MZmine2 and MFAssignR, two opensource data processing tools and commercial Mesquite liquid smoke as a surrogate for biomass burning organic aerosol. MZmine2.53 data extraction followed MFAssignR molecular formula assignment offered noise free and highly accurate 1733 individual molecular formulas presented in liquid smoke with 4906 molecular species, including isomers. The results of this new approach were consistent with the results of direct infusion FT-MS analysis confirming its reliability. Over 90% of the molecular formulas presented in mesquite liquid smoke were matched with the molecular formulas of ambient biomass burning organic aerosol. This suggests the potential use of commercial liquid smoke is an acceptable surrogate for biomass burning organic aerosol research. The presented method significantly improves the identification of the molecular composition of biomass burning organic aerosol by successfully addressing some of the limitations related to the data analysis and giving a semi quantitative insight into the analysis.


Asunto(s)
Humo , Biomasa , Análisis de Fourier , Reproducibilidad de los Resultados , Espectrometría de Masas , Humo/análisis , Cromatografía Liquida , Aerosoles/análisis
3.
Microbiol Spectr ; 11(3): e0031622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37017561

RESUMEN

There is a growing need for biological and chemical methods for upcycling plastic waste streams. Pyrolysis processes can accelerate plastic depolymerization by breaking polyethylene into smaller alkene components which may be more biodegradable than the initial polymer. While the biodegradation of alkanes has been extensively studied, the role microorganisms play in alkene breakdown is not well understood. Alkene biodegradation holds the potential to contribute to the coupling of chemical and biological processing of polyethylene plastics. In addition, nutrient levels are known to impact rates of hydrocarbon degradation. Model alkenes were used (C6, C10, C16, and C20) to follow the breakdown capability of microbial communities from three environmental inocula in three nutrient levels over the course of 5 days. Higher-nutrient cultures were anticipated to exhibit enhanced biodegradation capabilities. Alkene mineralization was assessed by measuring CO2 production in the culture headspace using GC-FID (gas chromatography-flame ionization detection), and alkene breakdown was directly quantified by measuring extracted residual hydrocarbons using gas chromatography-mass spectrometry (GC/MS). Here, the efficacy of enriched consortia derived from the microbial communities of three inoculum sources (farm compost, Caspian Sea sediment, and an iron-rich sediment) at alkene breakdown was investigated over the course of 5 days across three nutrient treatments. No significant differences in CO2 production across nutrient levels or inoculum types were found. A high extent of biodegradation was observed in all sample types, with most samples achieving 60% to 95% biodegradation of all quantified compounds. Here, our findings indicate that alkene biodegradation is a common metabolic process in diverse environments and that nutrient levels common to culture media can support the growth of alkene-biodegrading consortia, primarily from the families Xanthamonadaceae, Nocardiaceae, and Beijerinkiaceae. IMPORTANCE Excess plastic waste poses a major environmental problem. Microorganisms can metabolize many of the breakdown products (alkenes) of plastics. While microbial degradation of plastics is typically slow, coupling chemical and biological processing of plastics has the potential to lead to novel methods for the upcycling of plastic wastes. Here, we explored how microbial consortia derived from diverse environments metabolize alkenes, which are produced by the pyrolysis of polyolefin plastics such as HDPE, and PP. We found that microbial consortia from diverse environments can rapidly metabolize alkenes of different chain lengths. We also explored how nutrients affect the rates of alkene breakdown and the microbial diversity of the consortia. Here, the findings indicate that alkene biodegradation is a common metabolism in diverse environments (farm compost, Caspian sediment, and iron-rich sediment) and that nutrient levels common to culture medium can support growth of alkene-biodegrading consortia, primarily from families Xanthamonadaceae, Nocardiaceae, and Beijerinkiaceae.


Asunto(s)
Alquenos , Microbiota , Humanos , Dióxido de Carbono , Consorcios Microbianos , Plásticos/metabolismo , Polietileno/química , Polietileno/metabolismo , Nutrientes
4.
Anal Chem ; 94(42): 14537-14545, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36215705

RESUMEN

We present a detailed molecular characterization of organophosphorus compounds in ambient organic aerosol influenced by wildfire smoke. Biomass burning organic aerosol (BBOA) is an important source of phosphorus (P) to surface waters, where even a small imbalance in the P flux can lead to substantial effects on water quality, such as eutrophication, algal blooms, and oxygen depletion. We aimed to exploit the ultrahigh resolving power, mass accuracy, and sensitivity of Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the molecular composition of an ambient BBOA sample collected downwind of Pacific Northwest wildfires. The 21-T FT-ICR MS yielded 10 533 distinct formulae, which included molecular species comprising C, H, O, and P with or without N, i.e., organophosphorus compounds that have long been quantified in wildfire smoke but have not yet been characterized at the molecular level. The lack of detailed molecular characterization of organophosphorus compounds in BBOA is primarily due to their inherently low concentrations in aerosols and poor ionization efficiency in complex mixtures. We demonstrate that the exceptional sensitivity of the 21-T FT-ICR MS allows qualitative analysis of a previously uncharacterized fraction of BBOA without its selective concentration from the organic matrix, exemplifying the need for ultrahigh-resolution tools for a more detailed and accurate molecular depiction of such complex mixtures.


Asunto(s)
Ciclotrones , Incendios Forestales , Análisis de Fourier , Humo , Compuestos Organofosforados , Espectrometría de Masas/métodos , Aerosoles , Fósforo , Oxígeno
5.
Environ Res ; 191: 110114, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866496

RESUMEN

Ultrahigh resolution mass spectrometry is widely used for nontargeted analysis of complex environmental and biological mixtures, such as dissolved organic matter, due to its unparalleled ability to provide accurate mass measurements. Accurate and efficient characterization of these mixtures is critical to being better able to evaluate their effect on human health and climate. This characterization requires accurate mass signals free from isobaric interferences, instrument noise, and mass measurement biases, allowing for molecular formula identification. To address this need, an open source post-processing pipeline for ultrahigh resolution mass spectra of environmental complex mixtures software was developed. MFAssignR contains functions that perform noise estimation, 13C and 34S polyisotopic mass filtering, mass measurement recalibration, and molecular formula assignment as part of a consistent data processing environment. Novel applications of mass defect analysis were used in the functions for noise estimation and isotope pair identification. Using formula extensions, exact mass measurements are converted to unambiguous molecular formulas via data dependent pathways, reducing a priori decisions. Optional molecular formula ambiguity and multiple non-oxygen heteroatoms are provided for custom user applications, including isotopically labeled reactive species, halogen-containing species, or tandem ultrahigh resolution mass spectrometry. This represents uncommon flexibility for an open-source software package. To evaluate the performance of MFAssignR, it was used to characterize a sample of biomass burning influenced organic aerosol and the results were compared to those from other available methods of molecular formula assignment and noise estimation. The differences between the methods are described here. Overall, the inclusion of a full pipeline of data preparation functions and the data-dependent ambiguity reductions in MFAssignR render excellent results and make MFAssignR well-suited for the consistent and efficient analysis of environmental complex mixtures. MFAssignR is publicly available via GitHub.


Asunto(s)
Mezclas Complejas , Programas Informáticos , Humanos , Isótopos , Espectrometría de Masas en Tándem
6.
Physiol Rep ; 6(7): e13666, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29654634

RESUMEN

Accurate quantification of cations and anions remains a major diagnostic tool in understanding diseased states. The current technologies used for these analyses are either unable to quantify all ions due to sample size/volume, instrument setup/method, or are only able to measure ion concentrations from one physiological sample (liquid or solid). Herein, we adapted a common analytical chemistry technique, ion chromatography and applied it to measure the concentration of cations; sodium, potassium, calcium, and magnesium (Na+ , K+ , Ca2+ , and Mg2+ ) and anions; chloride, and acetate (Cl- , - OAc) from physiological samples. Specifically, cations and anions were measured in liquid samples: serum, urine, and cerebrospinal fluid, as well as tissue samples: liver, cortex, hypothalamus, and amygdala. Serum concentrations of Na+ , K+ , Ca2+ , Mg2+ , Cl- , and - OAc (mmol/L): 138.8 ± 4.56, 4.05 ± 0.21, 4.07 ± 0.26, 0.98 ± 0.05, 97.7 ± 3.42, and 0.23 ± 0.04, respectively. Cerebrospinal fluid concentrations of Na+ , K+ , Ca2+ , Mg2+ , Cl- , and - OAc (mmol/L): 145.1 ± 2.81, 2.41 ± 0.26, 2.18 ± 0.38, 1.04 ± 0.11, 120.2 ± 3.75, 0.21 ± 0.05, respectively. Tissue Na+ , K+ , Ca2+ , Mg2+ , Cl- , and - OAc were also measured. Validation of the ion chromatography method was established by comparing chloride concentration between ion chromatography with a known method using an ion selective chloride electrode. These results indicate that ion chromatography is a suitable method for the measurement of cations and anions, including acetate from various physiological samples.


Asunto(s)
Acetatos/análisis , Aniones/análisis , Cationes/análisis , Cromatografía por Intercambio Iónico/métodos , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA