Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Agric Sci Technol ; 4(10): 1074-1082, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39450248

RESUMEN

Push-pull technology refers to a promising mixed cropping practice for sustainable agricultural intensification, which uses properties of intercrop and border crop species to defend a focal crop against pests. Currently, the most widely practiced system uses Desmodium spp. as intercrop and Brachiaria or Napier grass as border crops to protect maize (Zea mays) against both insect pests and parasitic weeds. Several previous studies have demonstrated the efficacy of the push-pull system, but research on the underlying chemical mechanisms has mostly been limited to laboratory and glasshouse experiments that may not fully reproduce the complexity of the system under natural conditions. To address this limitation, we performed a large-scale study in farmer-operated push-pull maize fields in three east African countries. We compared maize leaf extracts from plants grown on push-pull fields with maize from fields employing conventional agricultural practices to assess the influence of push-pull cultivation on the maize metabolome. We identified two benzoxazinoid glycosides, which are known to have antiherbivore properties and were present in greater relative abundance in push-pull-cultivated maize leaves across three countries. Our data thus suggest that maize cultivated under push-pull has an increased resistance to herbivore attack compared to maize grown under conventional local agricultural practices.

2.
Ecol Evol ; 14(6): e11599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882534

RESUMEN

Duckweeds, including the common duckweed Lemna minor, are increasingly used to test eco-evolutionary theories. Yet, despite its popularity and near-global distribution, the understanding of its population structure (and genetic variation therein) is still limited. It is essential that this is resolved, because of the impact genetic diversity has on experimental responses and scientific understanding. Through whole-genome sequencing, we assessed the genetic diversity and population genomic structure of 23 natural Lemna spp. populations from their natural range in Switzerland. We used two distinct analytical approaches, a reference-free kmer approach and the classical reference-based one. Two genetic clusters were identified across the described species distribution of L. minor, surprisingly corresponding to species-level divisions. The first cluster contained the targeted L. minor individuals and the second contained individuals from a cryptic species: Lemna japonica. Within the L. minor cluster, we identified a well-defined population structure with little intra-population genetic diversity (i.e., within ponds) but high inter-population diversity (i.e., between ponds). In L. japonica, the population structure was significantly weaker and genetic variation between a subset of populations was as low as within populations. This study revealed that L. japonica is more widespread than previously thought. Our findings signify that thorough genotype-to-phenotype analyses are needed in duckweed experimental ecology and evolution.

3.
J Am Chem Soc ; 146(25): 17261-17269, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38759637

RESUMEN

Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by in vitro transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides. Herein, we established the rapid, flow-based synthesis of chemically modified MccJ25 precursor peptides (57 amino acids). Heterologous expression of enzymes McjB and McjC was extensively optimized to improve yields and facilitate the synthesis of multiple analogues of MccJ25, including the incorporation of non-canonical tyrosine and histidine derivatives into the lasso scaffold. Finally, using our chemoenzymatic strategy, we produced a biologically active analogue containing three d-amino acids in the loop region and incorporated backbone N-methylations. Our method provides rapid access to chemically modified lasso peptides that could be used to investigate structure-activity relationships, epitope grafting, and the improvement of therapeutic properties.


Asunto(s)
Péptidos , Péptidos/química , Péptidos/síntesis química , Bacteriocinas
4.
Plant Direct ; 8(4): e578, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601948

RESUMEN

Mass spectrometry-based plant metabolomics is frequently used to identify novel natural products or study the effect of specific treatments on a plant's metabolism. Reliable sample handling is required to avoid artifacts, which is why most protocols mandate shock freezing of plant tissue in liquid nitrogen and an uninterrupted cooling chain. However, the logistical challenges of this approach make it infeasible for many ecological studies. Especially for research in the tropics, permanent cooling poses a challenge, which is why many of those studies use dried leaf tissue instead. We screened a total of 10 extraction and storage approaches for plant metabolites extracted from maize leaf tissue across two cropping seasons to develop a methodology for agroecological studies in logistically challenging tropical locations. All methods were evaluated based on changes in the metabolite profile across a 2-month storage period at different temperatures with the goal of reproducing the metabolite profile of the living plant as closely as possible. We show that our newly developed on-site liquid-liquid extraction protocol provides a good compromise between sample replicability, extraction efficiency, material logistics, and metabolite profile stability. We further discuss alternative methods which showed promising results and feasibility of on-site sample handling for field studies.

5.
Plant Methods ; 19(1): 108, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37833725

RESUMEN

Remote sensing of vegetation by spectroscopy is increasingly used to characterize trait distributions in plant communities. How leaves interact with electromagnetic radiation is determined by their structure and contents of pigments, water, and abundant dry matter constituents like lignins, phenolics, and proteins. High-resolution ("hyperspectral") spectroscopy can characterize trait variation at finer scales, and may help to reveal underlying genetic variation-information important for assessing the potential of populations to adapt to global change. Here, we use a set of 360 inbred genotypes of the wild coyote tobacco Nicotiana attenuata: wild accessions, recombinant inbred lines (RILs), and transgenic lines (TLs) with targeted changes to gene expression, to dissect genetic versus non-genetic influences on variation in leaf spectra across three experiments. We calculated leaf reflectance from hand-held field spectroradiometer measurements covering visible to short-wave infrared wavelengths of electromagnetic radiation (400-2500 nm) using a standard radiation source and backgrounds, resulting in a small and quantifiable measurement uncertainty. Plants were grown in more controlled (glasshouse) or more natural (field) environments, and leaves were measured both on- and off-plant with the measurement set-up thus also in more to less controlled environmental conditions. Entire spectra varied across genotypes and environments. We found that the greatest variance in leaf reflectance was explained by between-experiment and non-genetic between-sample differences, with subtler and more specific variation distinguishing groups of genotypes. The visible spectral region was most variable, distinguishing experimental settings as well as groups of genotypes within experiments, whereas parts of the short-wave infrared may vary more specifically with genotype. Overall, more genetically variable plant populations also showed more varied leaf spectra. We highlight key considerations for the application of field spectroscopy to assess genetic variation in plant populations.

6.
Proc Natl Acad Sci U S A ; 120(35): e2308500120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607232

RESUMEN

When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.


Asunto(s)
Redes Reguladoras de Genes , Herbivoria , Herbivoria/genética , Mutación
7.
Sci Adv ; 9(35): eadi4029, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647404

RESUMEN

The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.


Asunto(s)
Longevidad , Metaboloma , Fenotipo , Hojas de la Planta
9.
Annu Rev Plant Biol ; 74: 609-633, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36889007

RESUMEN

Plant volatiles comprise thousands of molecules from multiple metabolic pathways, distinguished by sufficient vapor pressure to evaporate into the headspace under normal environmental conditions. Many are implicated as ecological signals, but what is the evidence-and how do they work? Volatiles diffuse, are carried by wind, and may be taken up by other organisms or degrade with exposure to atmospheric ozone, radicals, and UV light; visual signals such as color are not subject to these complications (but require a line of sight). Distantly related plants-and nonplants-produce many of the same volatiles, yet specific compounds and blends may be distinct. Here, I present a quantitative review of the literature on plant volatiles as ecological signals, illustrating a field that has focused on developing ideas as much as reporting primary data. I discuss advantages and constraints, review recent advances, and propose considerations for primary studies to elucidate particular functions of plant volatiles.


Asunto(s)
Ozono , Ozono/metabolismo , Plantas/metabolismo , Transducción de Señal
10.
Tree Genet Genomes ; 19(1): 3, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532711

RESUMEN

Genetic diversity influences the evolutionary potential of forest trees under changing environmental conditions, thus indirectly the ecosystem services that forests provide. European beech (Fagus sylvatica L.) is a dominant European forest tree species that increasingly suffers from climate change-related die-back. Here, we conducted a systematic literature review of neutral genetic diversity in European beech and created a meta-data set of expected heterozygosity (He) from all past studies providing nuclear microsatellite data. We propose a novel approach, based on population genetic theory and a min-max scaling to make past studies comparable. Using a new microsatellite data set with unprecedented geographic coverage and various re-sampling schemes to mimic common sampling biases, we show the potential and limitations of the scaling approach. The scaled meta-dataset reveals the expected trend of decreasing genetic diversity from glacial refugia across the species range and also supports the hypothesis that different lineages met and admixed north of the European mountain ranges. As a result, we present a map of genetic diversity across the range of European beech which could help to identify seed source populations harboring greater diversity and guide sampling strategies for future genome-wide and functional investigations of genetic variation. Our approach illustrates how to combine information from several nuclear microsatellite data sets to describe patterns of genetic diversity extending beyond the geographic scale or mean number of loci used in each individual study, and thus is a proof-of-concept for synthesizing knowledge from existing studies also in other species. Supplementary Information: The online version contains supplementary material available at 10.1007/s11295-022-01577-4.

11.
Chimia (Aarau) ; 76(11): 906-913, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069785

RESUMEN

Push-pull technology (PPT) employs mixed cropping for sustainable intensification: an intercrop repels or suppresses pests of the focal crop (push), while a trap crop attracts pests out of the field (pull), where they may be targeted for control. Underlying chemical-ecological mechanisms have been demonstrated in controlled settings, primarily for some of the best-established cereal PPT systems developed in east Africa. Yet, many questions remain regarding mechanisms, and strategies to adapt PPT for different crops and locations. We conducted a systematic review of scientific literature on PPT and related practices for biological control of pests of food and fodder. Of 3335 results, we identified 45 reporting on chemistry of trap- or intercropping systems for pest control, of which 30 focused on cereals or African pests. Seven of these reported primary chemical data: measurements from glasshouse and laboratory studies (5), or of field-collected samples (2). From these 30, we provide a database of compounds, discussing degrees of evidence for their mediation of push-pull. We depict hypothesized spatial distributions of selected compounds in PPT fields from physical properties and emission/exudation rates, and design of the east African cereal PPT system, and discuss influences on activity in field settings likely to affect success.

12.
Nat Ecol Evol ; 6(1): 36-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949824

RESUMEN

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.


Asunto(s)
Ecosistema , Suelo , Fenotipo , Hojas de la Planta , Plantas
13.
BMC Plant Biol ; 21(1): 401, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461825

RESUMEN

BACKGROUND: Timing is everything when it comes to the fitness outcome of a plant's ecological interactions, and accurate timing is particularly relevant for interactions with herbivores or mutualists that are based on ephemeral emissions of volatile organic compounds. Previous studies of the wild tobacco N. attenuata have found associations between the diurnal timing of volatile emissions, and daytime predation of herbivores by their natural enemies. RESULTS: Here, we investigated the role of light in regulating two biosynthetic groups of volatiles, terpenoids and green leaf volatiles (GLVs), which dominate the herbivore-induced bouquet of N. attenuata. Light deprivation strongly suppressed terpenoid emissions while enhancing GLV emissions, albeit with a time lag. Silencing the expression of photoreceptor genes did not alter terpenoid emission rhythms, but silencing expression of the phytochrome gene, NaPhyB1, disordered the emission of the GLV (Z)-3-hexenyl acetate. External abscisic acid (ABA) treatments increased stomatal resistance, but did not truncate the emission of terpenoid volatiles (recovered in the headspace). However, ABA treatment enhanced GLV emissions and leaf internal pools (recovered from tissue), and reduced internal linalool pools. In contrast to the pattern of diurnal terpenoid emissions and nocturnal GLV emissions, transcripts of herbivore-induced plant volatile (HIPV) biosynthetic genes peaked during the day. The promotor regions of these genes were populated with various cis-acting regulatory elements involved in light-, stress-, phytohormone- and circadian regulation. CONCLUSIONS: This research provides insights into the complexity of the mechanisms involved in the regulation of HIPV bouquets, a mechanistic complexity which rivals the functional complexity of HIPVs, which includes repelling herbivores, calling for body guards, and attracting pollinators.


Asunto(s)
Ritmo Circadiano , Herbivoria/fisiología , Luz , Nicotiana/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Ácido Abscísico/farmacología , Animales , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Larva/fisiología , Mariposas Nocturnas/fisiología , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Terpenos/metabolismo
14.
J Integr Plant Biol ; 63(8): 1416-1421, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33930259

RESUMEN

The ubiquitous volatile linalool is metabolized in plants to nonvolatile derivatives. We studied Nicotiana attenuata plants which naturally vary in (S)-(+)-linalool contents, and lines engineered to produce either (R)-(-)- or (S)-(+)-linalool. Only (S)-(+)-linalool production was associated with slower growth of a generalist herbivore, and a large fraction was present as nonvolatile derivatives. We found that variation in volatile linalool and its nonvolatile glycosides mapped to the same genetic locus which harbored the biosynthetic gene, NaLIS, but that free linalool varied more in environmental responses. This study reveals how (S)-(+)-linalool and conjugates differ in their regulation and possible functions in resistance.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Sitios Genéticos , Variación Genética , Metaboloma/genética , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Plantas Modificadas Genéticamente , Nicotiana/efectos de los fármacos , Nicotiana/genética
15.
Ecol Evol ; 10(14): 7419-7430, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760538

RESUMEN

The growing pace of environmental change has increased the need for large-scale monitoring of biodiversity. Declining intraspecific genetic variation is likely a critical factor in biodiversity loss, but is especially difficult to monitor: assessments of genetic variation are commonly based on measuring allele pools, which requires sampling of individuals and extensive sample processing, limiting spatial coverage. Alternatively, imaging spectroscopy data from remote platforms may hold the potential to reveal genetic structure of populations. In this study, we investigated how differences detected in an airborne imaging spectroscopy time series correspond to genetic variation within a population of Fagus sylvatica under natural conditions.We used multi-annual APEX (Airborne Prism Experiment) imaging spectrometer data from a temperate forest located in the Swiss midlands (Laegern, 47°28'N, 8°21'E), along with microsatellite data from F. sylvatica individuals collected at the site. We identified variation in foliar reflectance independent of annual and seasonal changes which we hypothesize is more likely to correspond to stable genetic differences. We established a direct connection between the spectroscopy and genetics data by using partial least squares (PLS) regression to predict the probability of belonging to a genetic cluster from spectral data.We achieved the best genetic structure prediction by using derivatives of reflectance and a subset of wavebands rather than full-analyzed spectra. Our model indicates that spectral regions related to leaf water content, phenols, pigments, and wax composition contribute most to the ability of this approach to predict genetic structure of F. sylvatica population in natural conditions.This study advances the use of airborne imaging spectroscopy to assess tree genetic diversity at canopy level under natural conditions, which could overcome current spatiotemporal limitations on monitoring, understanding, and preventing genetic biodiversity loss imposed by requirements for extensive in situ sampling.

16.
Elife ; 92020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780018

RESUMEN

A common rice pest can avoid its natural parasite by settling on plants that smell like they have been damaged by a species of caterpillar.


Asunto(s)
Hemípteros , Oryza , Animales , Olfato
17.
New Phytol ; 228(4): 1227-1242, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32608045

RESUMEN

The circadian clock contextualizes plant responses to environmental signals. Plants use temporal information to respond to herbivory, but many of the functional roles of circadian clock components in these responses, and their contribution to fitness, remain unknown. We investigate the role of the central clock regulator TIMING OF CAB EXPRESSION 1 (TOC1) in Nicotiana attenuata's defense responses to the specialist herbivore Manduca sexta under both field and glasshouse conditions. We utilize 15 N pulse-labeling to quantify nitrogen incorporation into pools of three defense compounds: caffeoylputrescine (CP), dicaffeoyl spermidine (DCS) and nicotine. Nitrogen incorporation was decreased in CP and DCS and increased in nicotine pools in irTOC1 plants compared to empty vector (EV) under control conditions, but these differences were abolished after simulated herbivory. Differences between EV and irTOC1 plants in nicotine, but not phenolamide production, were abolished by treatment with the ethylene agonist 1-methylcyclopropene. Using micrografting, TOC1's effect on nicotine was isolated to the root and did not affect the fitness of heterografts under field conditions. These results suggest that the circadian clock contributes to plant fitness by balancing production of metabolically expensive nitrogen-rich defense compounds and mediating the allocation of resources between vegetative biomass and reproduction.


Asunto(s)
Manduca , Nicotiana , Animales , Ciclopentanos , Herbivoria , Nitrógeno , Oxilipinas , Proteínas de Plantas , Asignación de Recursos
18.
New Phytol ; 228(3): 1083-1096, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32535930

RESUMEN

Plant volatile emissions can recruit predators of herbivores for indirect defense and attract pollinators to aid in pollination. Although volatiles involved in defense and pollinator attraction are primarily emitted from leaves and flowers, respectively, they will co-evolve if their underlying genetic basis is intrinsically linked, due either to pleiotropy or to genetic linkage. However, direct evidence of co-evolving defense and floral traits is scarce. We characterized intraspecific variation of herbivory-induced plant volatiles (HIPVs), the key components of indirect defense against herbivores, and floral volatiles in wild tobacco Nicotiana attenuata. We found that variation of (E)-ß-ocimene and (E)-α-bergamotene contributed to the correlated changes in HIPVs and floral volatiles among N. attenuata natural accessions. Intraspecific variations of (E)-ß-ocimene and (E)-α-bergamotene emissions resulted from allelic variation of two genetically co-localized terpene synthase genes, NaTPS25 and NaTPS38, respectively. Analyzing haplotypes of NaTPS25 and NaTPS38 revealed that allelic variations of NaTPS25 and NaTPS38 resulted in correlated changes of (E)-ß-ocimene and (E)-α-bergamotene emission in HIPVs and floral volatiles in N. attenuata. Together, these results provide evidence that pleiotropy and genetic linkage result in correlated changes in defenses and floral signals in natural populations, and the evolution of plant volatiles is probably under diffuse selection.


Asunto(s)
Transferasas Alquil y Aril , Compuestos Orgánicos Volátiles , Transferasas Alquil y Aril/genética , Flores/genética , Herbivoria , Polinización , Nicotiana/genética
19.
Science ; 368(6497): 1377-1381, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554595

RESUMEN

Plants emit an extraordinary diversity of chemicals that provide information about their identity and mediate their interactions with insects. However, most studies of this have focused on a few model species in controlled environments, limiting our capacity to understand plant-insect chemical communication in ecological communities. Here, by integrating information theory with ecological and evolutionary theories, we show that a stable information structure of plant volatile organic compounds (VOCs) can emerge from a conflicting information process between plants and herbivores. We corroborate this information "arms race" theory with field data recording plant-VOC associations and plant-herbivore interactions in a tropical dry forest. We reveal that plant VOC redundancy and herbivore specialization can be explained by a conflicting information transfer. Information-based communication approaches can increase our understanding of species interactions across trophic levels.


Asunto(s)
Biota , Cadena Alimentaria , Herbivoria , Insectos/fisiología , Plantas/parasitología , Compuestos Orgánicos Volátiles/química , Animales , Insectos/química , Plantas/química
20.
Elife ; 92020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32057293

RESUMEN

Plant trait diversity is known to influence population yield, but the scale at which this happens remains unknown: divergent individuals might change yields of immediate neighbors (neighbor scale) or of plants across a population (population scale). We use Nicotiana attenuata plants silenced in mitogen-activated protein kinase 4 (irMPK4) - with low water-use efficiency (WUE) - to study the scale at which water-use traits alter intraspecific population yields. In the field and glasshouse, we observed overyielding in populations with low percentages of irMPK4 plants, unrelated to water-use phenotypes. Paired-plant experiments excluded the occurrence of overyielding effects at the neighbor scale. Experimentally altering field arbuscular mycorrhizal fungal associations by silencing the Sym-pathway gene NaCCaMK did not affect reproductive overyielding, implicating an effect independent of belowground AMF interactions. Additionally, micro-grafting experiments revealed dependence on shoot-expressed MPK4 for N. attenuata to vary its yield per neighbor presence. We find that variation in a single gene, MPK4, is responsible for population overyielding through a mechanism, independent of irMPK4's WUE phenotype, at the aboveground, population scale.


Whether on farmland or in a forest, plants do not grow in isolation. Plants compete with their neighbors over limited space and resources, and individual plants respond to this competition in different ways by changing how much they grow and how they use resources. The efficiency with which crop plants use water, for example, is one trait that is dramatically influenced by neighboring plants and is of increasing concern given the warming climate. Understanding the effects of interactions between individual plants in a population as a whole is complicated, especially in natural plant communities where neighbors are often from different species. For this reason, McGale et al. took a different approach and looked at neighbors that were all from the same species and differed only in the activity of a single gene. The species in question was coyote tobacco, a plant that is native to western North America. McGale et al. used genetic engineering to silence a gene called MPK4, which was known from previous studies to have the effect of reducing water-use efficiency. Some of these 'water-inefficient' plants were then grown in mixed populations with plants that had normal levels of MPK4. In experiments conducted both in a glasshouse and at a field station in the Utah desert, McGale et al. found that populations with a low percentage of the MPK4-silenced plants were actually more productive than 'monocultures' that were all one type or the other. Further analysis showed that the increase in productivity did not depend on the different soil nutrient or water use of the different populations, or even the density of the plants in the populations. Pairs of plants grown in single pots essentially ruled out any interactions between immediate neighbors being responsible for the increased productivity, suggesting that that effect must instead emerge at the level of the population. Perhaps unexpectedly, McGale et al. also found that the MPK4-silenced plants and control plants did not actually differ in how they used water when grown in the field (previous studies had all been conducted in glasshouses), indicating that this trait also could not explain the observed population-level effect. Finally, experiments that involved grafting the shoots of one plant onto the roots of another suggested that the effect most likely comes from the aboveground parts of the plant. Ecologists have previously noted that more diverse populations typically have higher productivity. This new finding that a small percentage of slightly different plants in an otherwise uniform population can increase overall productivity will likely to be of special interest to researchers looking to boost the efficiency of agricultural ecosystems. Also, since MPK4 is highly conserved, and thus likely to be found in many plant species, this could be an interesting trait with which to study the interactions of natural plant communities.


Asunto(s)
Genes de Plantas/genética , Variación Genética/genética , Genética de Población , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Plantas/genética , Carácter Cuantitativo Heredable , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...