Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702390

RESUMEN

The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38662593

RESUMEN

Endogenous antibodies, or immunoglobulins (Igs), abundantly present in body fluids, represent some of the most challenging samples to analyze, largely due to the immense variability in their sequences and concentrations. It has been estimated that our body can produce billions of different Ig proteins with different isotypes, making their individual analysis seemingly impossible. However, recent advances in protein-centric proteomics using LC-MS coupled to Orbitrap mass analyzers to profile intact Fab fragments formed by selective cleavage at the IgG-hinge revealed that IgG repertoires may be less diverse, albeit unique for each donor. Serum repertoires seem to be dominated by a few hundred clones that cumulatively make up 50-95% of the total IgG content. Enabling such analyses required careful optimization of the chromatography and mass analysis, as all Fab analytes are highly alike in mass (46-51 kDa) and sequence. To extend the opportunities of this mass-spectrometry-based profiling of antibody repertoires, we here report the optimization and evaluation of an alternative MS platform, namely, the timsTOF, for antibody repertoire profiling. The timsTOF mass analyzer has gained traction in recent years for peptide-centric proteomics and found wide applicability in plasma proteomics, affinity proteomics, and HLA peptidomics, to name a few. However, for protein-centric analysis, this platform has been less explored. Here, we demonstrate that the timsTOF platform can be adapted to perform protein-centric LC-MS-based profiling of antibody repertoires. In a side-by-side comparison of the timsTOF and the Orbitrap we demonstrate that the extracted serum antibody repertoires are alike qualitatively and quantitatively, whereby in particular the sensitivity of the timsTOF platform excels. Future incorporation of advanced top-down capabilities on the timsTOF may make this platform a very valuable alternative for protein-centric proteomics and top-down proteomics and thus also for personalized antibody repertoire profiling.

3.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351373

RESUMEN

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Asunto(s)
Adenilil Ciclasas , Calmodulina , Animales , Bovinos , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Colforsina/farmacología , Microscopía por Crioelectrón , Proteómica , Proteínas de Unión al GTP/metabolismo
4.
Trends Biochem Sci ; 49(2): 156-168, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38158273

RESUMEN

Membrane adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. As effector proteins of G protein-coupled receptors and other signaling pathways, ACs receive and amplify signals from the cell surface, translating them into biochemical reactions in the intracellular space and integrating different signaling pathways. Despite their importance in signal transduction and physiology, our knowledge about the structure, function, regulation, and molecular interactions of ACs remains relatively scarce. In this review, we summarize recent advances in our understanding of these membrane enzymes.


Asunto(s)
Adenilil Ciclasas , Transducción de Señal , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Transducción de Señal/fisiología , Membrana Celular/metabolismo
5.
ArXiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38013887

RESUMEN

Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.

6.
Elife ; 122023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535063

RESUMEN

Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Humanos , Comunicación Celular/fisiología , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/fisiología
7.
Sci Adv ; 9(35): eadh4890, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647412

RESUMEN

In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing. Here, we describe the high-resolution cryo-electron cryo-myography (cryo-EM) structures of the Cx32 GJC and HC, along with two CMT1X-linked mutants, W3S and R22G. While the structures of wild-type and mutant GJCs are virtually identical, the HCs show a major difference: In the W3S and R22G mutant HCs, the amino-terminal gating helix partially occludes the pore, consistent with a diminished HC activity. Our results suggest that HC dysfunction may be involved in the pathogenesis of CMT1X.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Conexinas , Humanos , Conexinas/genética , Canales Iónicos , Enfermedad de Charcot-Marie-Tooth/genética , Uniones Comunicantes/genética , Proteína beta1 de Unión Comunicante
8.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011209

RESUMEN

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Asunto(s)
Calmodulina , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico/fisiología , Microscopía por Crioelectrón , Calcio/metabolismo , Nucleótidos Cíclicos/farmacología , GMP Cíclico/metabolismo
9.
J Crohns Colitis ; 17(9): 1514-1527, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36961872

RESUMEN

INTRODUCTION: Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS: UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS: Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION: The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.

10.
Elife ; 112022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35980026

RESUMEN

Mycobacterium tuberculosis adenylyl cyclase (AC) Rv1625c/Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signalling is well established, the function of their transmembrane (TM) regions remains unknown. Here, we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.


Asunto(s)
Adenilil Ciclasas , Mycobacterium tuberculosis , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Dominio Catalítico , Mamíferos/metabolismo , Mycobacterium tuberculosis/metabolismo
11.
Bioinform Adv ; 2(1): vbab041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699412

RESUMEN

Summary: We present a flexible, user-friendly R package called protti for comprehensive quality control, analysis and interpretation of quantitative bottom-up proteomics data. protti supports the analysis of protein-centric data such as those associated with protein expression analyses, as well as peptide-centric data such as those resulting from limited proteolysis-coupled mass spectrometry analysis. Due to its flexible design, it supports analysis of label-free, data-dependent, data-independent and targeted proteomics datasets. protti can be run on the output of any search engine and software package commonly used for bottom-up proteomics experiments such as Spectronaut, Skyline, MaxQuant or Proteome Discoverer, adequately exported to table format. Availability and implementation: protti is implemented as an open-source R package. Release versions are available via CRAN (https://CRAN.R-project.org/package=protti) and work on all major operating systems. The development version is maintained on GitHub (https://github.com/jpquast/protti). Full documentation including examples is provided in the form of vignettes on our package website (jpquast.github.io/protti/).

12.
Archaeol Anthropol Sci ; 12(11): 265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123298

RESUMEN

The identification of sex-specific peptides in human tooth enamel by nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) represents a quantum leap for the study of childhood and social relations more generally. Determining sex-related differences in prehistoric child rearing and mortality has been hampered by the insufficient accuracy in determining the biological sex of juveniles. We conducted mass spectrometric analysis to identify sex-specific peptides in the dental enamel of a child from a settlement pit of the Early Bronze Age settlement of Schleinbach, Austria (c. 1950-1850 bc). Four perimortal impression fractures on the skull of a 5-6-year-old child indicate an intentional killing, with a co-buried loom weight as possible murder weapon. Proteomic analysis, conducted for the first time on prehistoric teeth in Austria, determined the child's sex as male. While we cannot conclusively determine whether the child was the victim of conflicts between village groups or was slain by members of his own community, we suggest that contextual evidence points to the latter. A possible trigger of violence was the follow-on effects of an uncontrolled middle ear infection revealed by an osteological analysis. The boy from Schleinbach highlights the potential for further investigation of gender-biased violence, infanticide and child murder based on the recently developed method of proteomic sex identification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA