Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854062

RESUMEN

For a damaged tissue to regenerate, the injured site must repair the wound, proliferate, and restore the correct patterning and cell types. We found that Zelda, a pioneer transcription factor largely known for its role in embryonic zygotic genome activation, is dispensable for normal wing development but crucial for wing disc patterning during regeneration. Impairing Zelda function during disc regeneration resulted in adult wings with a plethora of cell fate errors, affecting the veins, margins, and posterior compartment identity. Using CUT&RUN, we identified and validated targets of Zelda including the cell fate genes cut, Delta and achaete, which failed to return to their normal expression patterns upon loss of Zelda. In addition, Zelda controls expression of factors previously established to preserve cell fate during regeneration like taranis and osa, which stabilizes engrailed expression during regeneration, thereby preserving posterior identity. Finally, Zelda ensures proper expression of the integrins encoded by multiple edematous wings and myospheroid during regeneration to prevent blisters in the resuting adult wing. Thus, Zelda is crucial for maintaining cell fate and structural architecture of the regenerating tissue.

2.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37781597

RESUMEN

The human heart is infamous for not healing after infarction in adults, prompting biomedical interest in species that can regenerate damaged hearts. In such animals as zebrafish and neonatal mice, cardiac repair relies on remaining heart tissue supporting cardiomyocyte proliferation. Natural de novo cardiogenesis in post-embryonic stages thus remains elusive. Here we show that the tunicate Ciona, an ascidian among the closest living relatives to the vertebrates, can survive complete chemogenetic ablation of the heart and loss of cardiac function, and recover both cardiac tissue and contractility. As in vertebrates, Ciona heart regeneration relies on Bone Morphogenetic Protein (BMP) signaling-dependent proliferation of cardiomyocytes, providing insights into the evolutionary origins of regenerative cardiogenesis in chordates. Remarkably, prospective lineage tracing by photoconversion of the fluorescent protein Kaede suggested that new cardiomyocytes can emerge from endodermal lineages in post-metamorphic animals, providing an unprecedented case of regenerative de novo cardiogenesis. Finally, while embryos cannot compensate for early losses of the cardiogenic lineage, forming heartless juveniles, developing animals gain their regenerative ability during metamorphosis, uncovering a fundamental transition between deterministic embryogenesis and regulative post-embryonic development.

3.
Dev Cell ; 34(1): 119-28, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26096735

RESUMEN

Regenerating tissue must replace lost structures with cells of the proper identity and function. How regenerating tissue establishes or maintains correct cell fates during regrowth is an open question. We have identified a gene, taranis, that is essential for maintaining proper cell fate in damaged and regenerating Drosophila wing imaginal discs but that is dispensable for these fates in normal wing development. In regenerating tissue with reduced levels of Taranis, expression of the posterior selector gene engrailed is silenced through an autoregulatory silencing mechanism that requires the PRC1 component polyhomeotic, resulting in a transformation of posterior tissue into anterior tissue late in regeneration. An essential component of the wound response, JNK signaling, induces this misregulation of engrailed expression. Taranis can suppress these JNK-induced cell fate changes without interfering with JNK signaling activity. Thus, taranis protects regenerating tissue from deleterious side effects of wound healing and regeneration.


Asunto(s)
Drosophila melanogaster/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Regeneración/fisiología , Alas de Animales/metabolismo , Cicatrización de Heridas/fisiología , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejo Represivo Polycomb 1/metabolismo , Cicatrización de Heridas/genética
4.
Genetics ; 186(1): 147-57, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20610412

RESUMEN

Cell hyperproliferation, inflammation, and angiogenesis are biological processes central to the pathogenesis of corneal disease, as well as other conditions including tumorigenesis and chronic inflammatory disorders. Due to the number of disease conditions that arise as a result of these abnormalities, identifying the molecular mechanisms underlying these processes is critical. The avascular and transparent cornea serves as a good in vivo model to study the pathogenesis of cell hyperproliferation, inflammation, and angiogenesis. Corneal disease 1 (Dstn(corn1)) mice are homozygous for a spontaneous null allele of the destrin (Dstn) gene, which is also known as actin depolymerizing factor (ADF). These mice exhibit abnormalities in the cornea including epithelial cell hyperproliferation, stromal inflammation, and neovascularization. We previously identified that the transcription factor, serum response factor (SRF) and a number of its target genes are upregulated in the cornea of these mice. In this study, we show that conditional ablation of Srf in the corneal epithelium of a diseased Dstn(corn1) cornea results in the rescue of the epithelial cell hyperproliferation, inflammation, and neovascularization phenotypes, delineating an epithelial cell-specific role for SRF in the development of all of these abnormalities. Our study also demonstrates that Dstn is genetically upstream of Srf and defines a new functional role for SRF as the master regulator of a hyperproliferative, inflammatory phenotype accompanied by neovascularization.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Factor de Respuesta Sérica/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Destrina/genética , Destrina/metabolismo , Doxiciclina/farmacología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio Corneal/citología , Epitelio Corneal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fenotipo , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA