Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 27(7): 2199-2211.e6, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091456

RESUMEN

Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis/genética , Plasticidad Neuronal/fisiología , Análisis de la Célula Individual/métodos , Transmisión Sináptica/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/fisiología , Ratas , Sinapsis/fisiología
2.
Brain ; 141(5): 1350-1374, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29538625

RESUMEN

De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.


Asunto(s)
Encefalopatías/complicaciones , Encefalopatías/genética , Epilepsia/fisiopatología , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas Munc18/genética , Animales , Anticonvulsivantes/uso terapéutico , Encefalopatías/tratamiento farmacológico , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Discapacidad Intelectual/complicaciones , Levetiracetam/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
3.
PLoS One ; 12(6): e0178533, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28586384

RESUMEN

Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.


Asunto(s)
Astrocitos/fisiología , Técnicas de Cocultivo , Neuronas GABAérgicas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Astrocitos/citología , Diferenciación Celular/fisiología , Células Cultivadas , Fenómenos Electrofisiológicos , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Análisis de la Célula Individual
4.
Stem Cell Reports ; 8(3): 659-672, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28238793

RESUMEN

Neurons communicate by regulated secretion of chemical signals from synaptic vesicles (SVs) and dense-core vesicles (DCVs). Here, we investigated the maturation of these two secretory pathways in micro-networks of human iPSC-derived neurons. These micro-networks abundantly expressed endogenous SV and DCV markers, including neuropeptides. DCV transport was microtubule dependent, preferentially anterograde in axons, and 2-fold faster in axons than in dendrites. SV and DCV secretion were strictly Ca2+ and SNARE dependent. DCV secretion capacity matured until day in vitro (DIV) 36, with intense stimulation releasing 6% of the total DCV pool, and then plateaued. This efficiency is comparable with mature mouse neurons. In contrast, SV secretion capacity continued to increase until DIV50, with substantial further increase in secretion efficiency and decrease in silent synapses. These data show that the two secretory pathways can be studied in human neurons and that they mature differentially, with DCV secretion reaching maximum efficiency when that of SVs is still low.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Neuronas/metabolismo , Vías Secretoras , Animales , Axones/metabolismo , Transporte Biológico , Biomarcadores , Calcio/metabolismo , Dendritas/metabolismo , Humanos , Ratones , Microtúbulos/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
5.
EMBO J ; 35(11): 1236-50, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27056679

RESUMEN

Presynaptic cannabinoid (CB1R) and metabotropic glutamate receptors (mGluR2/3) regulate synaptic strength by inhibiting secretion. Here, we reveal a presynaptic inhibitory pathway activated by extracellular signal-regulated kinase (ERK) that mediates CB1R- and mGluR2/3-induced secretion inhibition. This pathway is triggered by a variety of events, from foot shock-induced stress to intense neuronal activity, and induces phosphorylation of the presynaptic protein Munc18-1. Mimicking constitutive phosphorylation of Munc18-1 results in a drastic decrease in synaptic transmission. ERK-mediated phosphorylation of Munc18-1 ultimately leads to degradation by the ubiquitin-proteasome system. Conversely, preventing ERK-dependent Munc18-1 phosphorylation increases synaptic strength. CB1R- and mGluR2/3-induced synaptic inhibition and depolarization-induced suppression of excitation (DSE) are reduced upon ERK/MEK pathway inhibition and further reduced when ERK-dependent Munc18-1 phosphorylation is blocked. Thus, ERK-dependent Munc18-1 phosphorylation provides a major negative feedback loop to control synaptic strength upon activation of presynaptic receptors and during intense neuronal activity.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Munc18/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica , Animales , Estimulación Eléctrica , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Hipocampo/fisiología , Humanos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación , Embarazo , Ratas Wistar , Estrés Psicológico/metabolismo
6.
J Cell Biol ; 204(5): 759-75, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24590174

RESUMEN

Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon-synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.


Asunto(s)
Proteínas Munc18/análisis , Terminales Presinápticos/metabolismo , Proteína Quinasa C/metabolismo , Animales , Axones/metabolismo , Electrofisiología , Técnicas de Sustitución del Gen , Ratones , Proteínas Munc18/metabolismo , Transporte de Proteínas , Sinapsis/metabolismo , Sintaxina 1/metabolismo
7.
PLoS One ; 7(5): e37589, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22629425

RESUMEN

The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Condroitina ABC Liasa/farmacología , Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células-Madre Neurales/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Traumatismos de la Médula Espinal/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Femenino , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ratas , Ratas Wistar , Vértebras Torácicas
8.
J Neurosci ; 30(5): 1657-76, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130176

RESUMEN

The transplantation of neural stem/progenitor cells (NPCs) is a promising therapeutic strategy for spinal cord injury (SCI). However, to date NPC transplantation has exhibited only limited success in the treatment of chronic SCI. Here, we show that chondroitin sulfate proteoglycans (CSPGs) in the glial scar around the site of chronic SCI negatively influence the long-term survival and integration of transplanted NPCs and their therapeutic potential for promoting functional repair and plasticity. We targeted CSPGs in the chronically injured spinal cord by sustained infusion of chondroitinase ABC (ChABC). One week later, the same rats were treated with transplants of NPCs and transient infusion of growth factors, EGF, bFGF, and PDGF-AA. We demonstrate that perturbing CSPGs dramatically optimizes NPC transplantation in chronic SCI. Engrafted NPCs successfully integrate and extensively migrate within the host spinal cord and principally differentiate into oligodendrocytes. Furthermore, this combined strategy promoted the axonal integrity and plasticity of the corticospinal tract and enhanced the plasticity of descending serotonergic pathways. These neuroanatomical changes were also associated with significantly improved neurobehavioral recovery after chronic SCI. Importantly, this strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. For the first time, we demonstrate key biological and functional benefits for the combined use of ChABC, growth factors, and NPCs to repair the chronically injured spinal cord. These findings could potentially bring us closer to the application of NPCs for patients suffering from chronic SCI or other conditions characterized by the formation of a glial scar.


Asunto(s)
Células Madre Adultas/trasplante , Condroitinasas y Condroitín Liasas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Plasticidad Neuronal , Neuronas/trasplante , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/cirugía , Animales , Axones/metabolismo , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Enfermedad Crónica , Femenino , Ratones , Ratones Transgénicos , Oligodendroglía/citología , Oligodendroglía/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/patología
9.
J Neurochem ; 92(3): 554-68, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659226

RESUMEN

Tomosyn was previously identified as a syntaxin-binding protein that inhibits soluble NSF (n-ethylmaleimide-sensitive fusion protein) attachment protein receptor (SNARE)-mediated secretion. We set out to investigate the distribution of tomosyn mRNA in the mammalian brain and found evidence for the presence of two paralogous genes designated tomosyn-1 and -2. In a collection of tomosyn-2 cDNA clones, we observed four splice variants (named xb-, b-, m- and s-tomosyn-2) derived from the skipping of exons 19 and 21. This feature is conserved with tomosyn-1 that encodes three splice variants. To compare the expression pattern of tomosyn-1 and -2, we performed in situ hybridization experiments with gene-specific probes. Both genes were expressed in the nervous system, clearly following distinct spatial and developmental expression patterns. Real-time quantitative PCR experiments indicated that tomosyn-1 expression was up-regulated less than threefold between developmental stages E10 and P12, whereas tomosyn-2 expression increased 31-fold. Not only the transcription level, but also the splice composition of tomosyn-2 mRNA shifted during development. We conclude that two distinct genes drive expression of seven tomosyn isoforms. Their expression patterns support a role in regulating neuronal secretion. All isoforms share conserved WD40 and SNARE domains separated by a hypervariable module, the function of which remains to be clarified.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/genética , Secuencia Conservada/genética , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Proteínas Portadoras/biosíntesis , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína/genética , Proteínas R-SNARE , ARN Mensajero/biosíntesis , Retina/embriología , Retina/metabolismo , Homología de Secuencia de Aminoácido , Médula Espinal/embriología , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...