Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 7171, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887403

RESUMEN

Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Transducción de Señal , Proteínas Portadoras/genética , Colesterol/química , Colesterol/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ligandos , Glicoproteínas de Membrana/genética , Unión Proteica , Dominios Proteicos
2.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34890564

RESUMEN

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas Hedgehog/metabolismo , Proteínas de la Membrana/metabolismo , Acilación , Aciltransferasas/genética , Aciltransferasas/ultraestructura , Regulación Alostérica , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Microscopía por Crioelectrón , Células HEK293 , Hemo/metabolismo , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Simulación de Dinámica Molecular , Palmitoil Coenzima A/metabolismo , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad
3.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33740419

RESUMEN

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/química , Movimiento Celular , Receptor DCC/deficiencia , Receptor DCC/genética , Proteínas Ligadas a GPI/química , Conos de Crecimiento/fisiología , Humanos , Ventrículos Laterales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Neuronas/citología , Neuronas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
4.
Nat Chem Biol ; 15(10): 975-982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548691

RESUMEN

Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.


Asunto(s)
Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animales , Colesterol/química , Regulación de la Expresión Génica , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Receptor Patched-1/química , Unión Proteica , Conformación Proteica , Anticuerpos de Dominio Único
5.
Mol Cell ; 75(3): 605-619.e6, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31255466

RESUMEN

Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Exodesoxirribonucleasas/genética , RecQ Helicasas/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Inestabilidad Genómica/genética , Células HeLa , Humanos , Neoplasias/genética , Mutaciones Letales Sintéticas/genética
6.
Methods ; 108: 92-8, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102626

RESUMEN

Faithful duplication of genetic material during every cell division is essential to ensure accurate transmission of genetic information to daughter cells. DNA helicases play a crucial role in promoting this process by facilitating almost all transactions occurring on DNA, including DNA replication and repair. They are responsible not only for DNA double helix unwinding ahead of progressing replication forks but also for resolution of secondary structures like G4 quadruplexes, HJ branch migration, double HJ dissolution, protein displacement, strand annealing and many more. Their importance in maintaining genome stability is underscored by the fact that many human disorders, including cancer, are associated with mutations in helicase genes. Here we outline how DNA fibre fluorography, a straightforward and inexpensive approach, can be employed to study the in vivo function of helicases in DNA replication and the maintenance of genome stability at a single molecule level. This approach directly visualizes the progression of individual replication forks within living cells and hence provides quantitative information on various aspects of DNA synthesis, such as replication fork processivity (replication speed), fork stalling, origin usage and fork termination.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Ingeniería Genética/métodos , ADN Helicasas/química , Reparación del ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , G-Cuádruplex , Inestabilidad Genómica/genética , Humanos
7.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593718

RESUMEN

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Ácidos Nucleicos Heterodúplex/metabolismo , Animales , ADN Helicasas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Noqueados , Mutación , Ácidos Nucleicos Heterodúplex/genética
8.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794620

RESUMEN

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Fosforilación , RecQ Helicasas/genética , Serina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
Cell Rep ; 7(5): 1547-1559, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24835992

RESUMEN

Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Inestabilidad Genómica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína BRCA2/genética , Replicación del ADN , Exonucleasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Quinasa Tipo Polo 1
10.
J Cell Biol ; 201(1): 33-48, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23530069

RESUMEN

Defective DNA repair causes Fanconi anemia (FA), a rare childhood cancer-predisposing syndrome. At least 15 genes are known to be mutated in FA; however, their role in DNA repair remains unclear. Here, we show that the FANCJ helicase promotes DNA replication in trans by counteracting fork stalling on replication barriers, such as G4 quadruplex structures. Accordingly, stabilization of G4 quadruplexes in ΔFANCJ cells restricts fork movements, uncouples leading- and lagging-strand synthesis and generates small single-stranded DNA gaps behind the fork. Unexpectedly, we also discovered that FANCJ suppresses heterochromatin spreading by coupling fork movement through replication barriers with maintenance of chromatin structure. We propose that FANCJ plays an essential role in counteracting chromatin compaction associated with unscheduled replication fork stalling and restart, and suppresses tumorigenesis, at least partially, in this replication-specific manner.


Asunto(s)
Proteínas Aviares/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Heterocromatina/enzimología , Animales , Proteínas Aviares/genética , Línea Celular , Pollos , ADN Helicasas/genética , ADN de Cadena Simple/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Heterocromatina/genética , Humanos
11.
Hum Mol Genet ; 21(9): 2005-16, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22279085

RESUMEN

FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas de Transporte de Nucleótidos/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Recombinación Homóloga , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
12.
J Vis Exp ; (56): e3255, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-22064662

RESUMEN

Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells(1). DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique(2-4). In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope.


Asunto(s)
Replicación del ADN , ADN/análisis , ADN/biosíntesis , Microscopía Fluorescente/métodos , Animales , Línea Celular , Pollos
14.
EMBO J ; 29(4): 806-18, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20057355

RESUMEN

Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Aviares/deficiencia , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Cromatina/metabolismo , ADN Helicasas/deficiencia , ADN Helicasas/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Transducción de Señal , Estrés Fisiológico , Proteínas Supresoras de Tumor/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...