RESUMEN
Effective immunity requires a large, diverse naive T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we addressed how S1P enables T cell survival and the implications for patients treated with S1PR1 antagonists. We found that S1PR1 limited apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization were required to prevent this proapoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naive T cells limited B cell responses. Our findings highlighted an effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggested both limitations and additional uses of this important class of drugs.
Asunto(s)
Ganglios Linfáticos , Linfocitos T , Animales , Humanos , Ratones , Linfocitos B , Ganglios Linfáticos/patología , Lisofosfolípidos , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina , Receptores de Esfingosina-1-FosfatoRESUMEN
Effective immunity requires a large, diverse naïve T cell repertoire circulating among lymphoid organs in search of antigen. Sphingosine 1-phosphate (S1P) and its receptor S1PR1 contribute by both directing T cell migration and supporting T cell survival. Here, we address how S1P enables T cell survival, and the implications for patients treated with S1PR1 antagonists. Contrary to expectations, we found that S1PR1 limits apoptosis by maintaining the appropriate balance of BCL2 family members via restraint of JNK activity. Interestingly, the same residues of S1PR1 that enable receptor internalization are required to prevent this pro-apoptotic cascade. Findings in mice were recapitulated in ulcerative colitis patients treated with the S1PR1 antagonist ozanimod, and the loss of naïve T cells limited B cell responses. Our findings highlight an unexpected effect of S1PR1 antagonists on the ability to mount immune responses within lymph nodes, beyond their effect on lymph node egress, and suggest both limitations and novel uses of this important class of drugs.
RESUMEN
During an immune response, the duration of T cell residence in lymphoid and non-lymphoid tissues likely affects T cell activation, differentiation, and memory development. The factors that govern T cell transit through inflamed tissues remain incompletely understood, but one important determinant of T cell exit from tissues is sphingosine 1-phosphate (S1P) signaling. In homeostasis, S1P levels are high in blood and lymph compared to lymphoid organs, and lymphocytes follow S1P gradients out of tissues into circulation using varying combinations of five G-protein coupled S1P receptors. During an immune response, both the shape of S1P gradients and the expression of S1P receptors are dynamically regulated. Here we review what is known, and key questions that remain unanswered, about how S1P signaling is regulated in inflammation and in turn how S1P shapes immune responses.
Asunto(s)
Receptores de Lisoesfingolípidos , Linfocitos T , Humanos , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Activación de LinfocitosRESUMEN
Chronic kidney disease (CKD), characterized by sustained inflammation and progressive fibrosis, is highly prevalent and can eventually progress to end-stage kidney disease. However, current treatments to slow CKD progression are limited. Sphingosine 1-phosphate (S1P), a product of sphingolipid catabolism, is a pleiotropic mediator involved in many cellular functions, and drugs targeting S1P signaling have previously been studied particularly for autoimmune diseases. The primary mechanism of most of these drugs is functional antagonism of S1P receptor-1 (S1P1) expressed on lymphocytes and the resultant immunosuppressive effect. Here, we documented the role of local S1P signaling in perivascular cells in the progression of kidney fibrosis using primary kidney perivascular cells and several conditional mouse models. S1P was predominantly produced by sphingosine kinase 2 in kidney perivascular cells and exported via spinster homolog 2 (Spns2). It bound to S1P1 expressed in perivascular cells to enhance production of proinflammatory cytokines/chemokines upon injury, leading to immune cell infiltration and subsequent fibrosis. A small-molecule Spns2 inhibitor blocked S1P transport, resulting in suppression of inflammatory signaling in human and mouse kidney perivascular cells in vitro and amelioration of kidney fibrosis in mice. Our study provides insight into the regulation of inflammation and fibrosis by S1P and demonstrates the potential of Spns2 inhibition as a treatment for CKD and potentially other inflammatory and fibrotic diseases that avoids the adverse events associated with systemic modulation of S1P receptors.
Asunto(s)
Inflamación , Insuficiencia Renal Crónica , Animales , Fibrosis , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Lisofosfolípidos , Ratones , Esfingosina/análogos & derivadosRESUMEN
In this elegant study, Evrard et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210116) find that sphingosine 1-phosphate receptor 5 (S1PR5) powerfully impairs tissue-resident memory T cell (TRM) formation, and that tissue-derived TGF-ß limits S1pr5 expression by infiltrating T cells.
Asunto(s)
Células T de Memoria , Receptores de Esfingosina-1-FosfatoRESUMEN
Differentiation of intestinal T helper 17 (Th17) cells, which contribute to mucosal barrier protection from invasive pathogens, is dependent on colonization with distinct commensal bacteria. Segmented filamentous bacteria (SFB) are sufficient to support Th17 cell differentiation in mouse, but the molecular and cellular requirements for this process remain incompletely characterized. Here, we show that intestine-draining mesenteric lymph nodes (MLNs), not intestine proper, are the dominant site of SFB-induced intestinal Th17 cell differentiation. Subsequent migration of these cells to the intestinal lamina propria is dependent on their upregulation of integrin ß7. Stat3-dependent induction of RORγt, the Th17 cell-specifying transcription factor, largely depends on IL-6, but signaling through the receptors for IL-21 and IL-23 can compensate for absence of IL-6 to promote SFB-directed Th17 cell differentiation. These results indicate that redundant cytokine signals guide commensal microbe-dependent Th17 cell differentiation in the MLNs and accumulation of the cells in the lamina propria.
Asunto(s)
Diferenciación Celular/inmunología , Citocinas/metabolismo , Intestinos/inmunología , Ganglios Linfáticos/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/fisiología , Citocinas/inmunología , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Activación de Linfocitos/inmunología , RatonesRESUMEN
T cell expression of sphingosine 1-phosphate (S1P) receptor 1 (S1PR1) enables T cell exit from lymph nodes (LNs) into lymph, while endothelial S1PR1 expression regulates vascular permeability. Drugs targeting S1PR1 treat autoimmune disease by trapping pathogenic T cells within LNs, but they have adverse cardiovascular side effects. In homeostasis, the transporter SPNS2 supplies lymph S1P and enables T cell exit, while the transporter MFSD2B supplies most blood S1P and supports vascular function. It is unknown whether SPNS2 remains necessary to supply lymph S1P during an immune response, or whether in inflammation other compensatory transporters are upregulated. Here, using a model of dermal inflammation, we demonstrate that SPNS2 supplies the S1P that guides T cells out of LNs with an ongoing immune response. Furthermore, deletion of Spns2 is protective in a mouse model of multiple sclerosis. These results support the therapeutic potential of SPNS2 inhibitors to achieve spatially specific modulation of S1P signaling.
Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Inmunidad , Ganglios Linfáticos/inmunología , Linfocitos T/inmunología , Animales , Proteínas de Transporte de Anión/deficiencia , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Inflamación/inmunología , Inflamación/patología , Linfa/metabolismo , Activación de Linfocitos/inmunología , Lisofosfolípidos , Ratones Endogámicos C57BL , Esfingosina/análogos & derivadosRESUMEN
The lipid chemoattractant sphingosine 1-phosphate (S1P) guides cells out of tissues, where the concentration of S1P is relatively low, into circulatory fluids, where the concentration of S1P is high1. For example, S1P directs the exit of T cells from lymph nodes, where T cells are initially activated, into lymph, from which T cells reach the blood and ultimately inflamed tissues1. T cells follow S1P gradients primarily using S1P receptor 1 (ref. 1). Recent studies have described how S1P gradients are established at steady state, but little is known about the distribution of S1P in disease or about how changing levels of S1P may affect immune responses. Here we show that the concentration of S1P increases in lymph nodes during an immune response. We found that haematopoietic cells, including inflammatory monocytes, were an important source of this S1P, which was an unexpected finding as endothelial cells provide S1P to lymph1. Inflammatory monocytes required the early activation marker CD69 to supply this S1P, in part because the expression of CD69 was associated with reduced levels of S1pr5 (which encodes S1P receptor 5). CD69 acted as a 'stand-your-ground' signal, keeping immune cells at a site of inflammation by regulating both the receptors and the gradients of S1P. Finally, increased levels of S1P prolonged the residence time of T cells in the lymph nodes and exacerbated the severity of experimental autoimmune encephalomyelitis in mice. This finding suggests that residence time in the lymph nodes might regulate the differentiation of T cells, and points to new uses of drugs that target S1P signalling.
Asunto(s)
Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Lisofosfolípidos/metabolismo , Monocitos/metabolismo , Esfingosina/análogos & derivados , Linfocitos T/inmunología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Ganglios Linfáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfocitos T/citologíaRESUMEN
RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Arterias Cerebrales/metabolismo , Células Endoteliales/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Ataque Isquémico Transitorio/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Lisofosfolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/prevención & control , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Ataque Isquémico Transitorio/prevención & control , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/prevención & control , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Fármacos Neuroprotectores/farmacología , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Grado de Desobstrucción VascularRESUMEN
The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.
Asunto(s)
Movimiento Celular/inmunología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Biomarcadores , Humanos , Sistema Inmunológico/citología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Esfingosina/metabolismoRESUMEN
Mammals evolved in the face of fluctuating food availability. How the immune system adapts to transient nutritional stress remains poorly understood. Here, we show that memory T cells collapsed in secondary lymphoid organs in the context of dietary restriction (DR) but dramatically accumulated within the bone marrow (BM), where they adopted a state associated with energy conservation. This response was coordinated by glucocorticoids and associated with a profound remodeling of the BM compartment, which included an increase in T cell homing factors, erythropoiesis, and adipogenesis. Adipocytes, as well as CXCR4-CXCL12 and S1P-S1P1R interactions, contributed to enhanced T cell accumulation in BM during DR. Memory T cell homing to BM during DR was associated with enhanced protection against infections and tumors. Together, this work uncovers a fundamental host strategy to sustain and optimize immunological memory during nutritional challenges that involved a temporal and spatial reorganization of the memory pool within "safe haven" compartments.
Asunto(s)
Médula Ósea/metabolismo , Memoria Inmunológica , Animales , Médula Ósea/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Restricción Calórica/veterinaria , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Dieta Reductora/veterinaria , Metabolismo Energético , Regulación de la Expresión Génica , Glucocorticoides , Melanoma Experimental/mortalidad , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The signaling lipid sphingosine 1-phosphate (S1P) plays key roles in many physiological processes. In the immune system, S1P's best-described function is to draw cells out of tissues into circulation. Here, we will review models of S1P distribution in the thymus, lymph nodes, spleen, and nonlymphoid tissues. These models have been challenging to construct, because of the lack of tools to map lipid gradients. Nonetheless, evidence to date suggests that S1P distribution is exquisitely tightly controlled, and that concentrations of signaling-available S1P cannot be predicted by standard rules of thumb. The fine regulation of S1P gradients may explain how S1P can simultaneously direct multiple cell movements both between tissues and circulation and within tissues. It may also make it feasible to develop drugs that enable spatially specific modulation of S1P signaling.
Asunto(s)
Inmunidad Celular , Liasas/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Circulación Sanguínea , Movimiento Celular , Humanos , Inmunomodulación , Lípidos/inmunología , Transducción de Señal , Esfingosina/metabolismoRESUMEN
Sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) regulate migration of lymphocytes out of thymus to blood and lymph nodes (LNs) to efferent lymph, whereas their role in other tissue sites is not known. Here, we investigated the question of how these molecules regulate leukocyte migration from tissues through afferent lymphatics to draining LNs (dLNs). S1P, but not other chemokines, selectively enhanced human and murine CD4 T cell migration across lymphatic endothelial cells (LECs). T cell S1PR1 and S1PR4, and LEC S1PR2, were required for migration across LECs and into lymphatic vessels and dLNs. S1PR1 and S1PR4 differentially regulated T cell motility and vascular cell adhesion molecule-1 (VCAM-1) binding. S1PR2 regulated LEC layer structure, permeability, and expression of the junction molecules VE-cadherin, occludin, and zonulin-1 through the ERK pathway. S1PR2 facilitated T cell transcellular migration through VCAM-1 expression and recruitment of T cells to LEC migration sites. These results demonstrated distinct roles for S1PRs in comodulating T cell and LEC functions in migration and suggest previously unknown levels of regulation of leukocytes and endothelial cells during homeostasis and immunity.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Movimiento Celular/inmunología , Células Endoteliales/inmunología , Vasos Linfáticos/inmunología , Receptores de Esfingosina-1-Fosfato/inmunología , Animales , Linfocitos T CD4-Positivos/fisiología , Línea Celular , Células Endoteliales/fisiología , Humanos , Lisofosfolípidos/inmunología , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Ratones Transgénicos , Esfingosina/análogos & derivados , Esfingosina/inmunología , Receptores de Esfingosina-1-Fosfato/genética , Proteínas de Uniones Estrechas/inmunología , Molécula 1 de Adhesión Celular Vascular/inmunologíaRESUMEN
In this issue of JEM, Fistonich et al. (https://doi.org/10.1084/jem.20180778) address how the bone marrow microenvironment supports diverse lineages through multiple developmental stages. Differential motility between pro- and preB cells results in differential IL-7 exposure, and, intriguingly, stromal cells respond to abnormal B cells by reducing Il7.
Asunto(s)
Células Madre Mesenquimatosas , Linfocitos B , Hematopoyesis , Interleucina-7 , Células del EstromaRESUMEN
In many contexts, innate lymphoid cells (ILCs) are primarily tissue resident. By contrast, in a recent issue of Science, Huang et al. (2018) show that inflammatory type 2 ILCs migrate from the intestine to the lungs and that this movement is guided by sphingosine-1-phosphate receptors.
Asunto(s)
Citocinas , Inmunidad Innata , Intestinos , Pulmón , LinfocitosRESUMEN
Effective adaptive immune responses require a large repertoire of naive T cells that migrate throughout the body, rapidly identifying almost any foreign peptide. Because the production of T cells declines with age, naive T cells must be long-lived. However, it remains unclear how naive T cells survive for years while constantly travelling. The chemoattractant sphingosine 1-phosphate (S1P) guides T cell circulation among secondary lymphoid organs, including spleen, lymph nodes and Peyer's patches, where T cells search for antigens. The concentration of S1P is higher in circulatory fluids than in lymphoid organs, and the S1P1 receptor (S1P1R) directs the exit of T cells from the spleen into blood, and from lymph nodes and Peyer's patches into lymph. Here we show that S1P is essential not only for the circulation of naive T cells, but also for their survival. Using transgenic mouse models, we demonstrate that lymphatic endothelial cells support the survival of T cells by secreting S1P via the transporter SPNS2, that this S1P signals through S1P1R on T cells, and that the requirement for S1P1R is independent of the established role of the receptor in guiding exit from lymph nodes. S1P signalling maintains the mitochondrial content of naive T cells, providing cells with the energy to continue their constant migration. The S1P signalling pathway is being targeted therapeutically to inhibit autoreactive T cell trafficking, and these findings suggest that it may be possible simultaneously to target autoreactive or malignant cell survival.
Asunto(s)
Células Endoteliales/metabolismo , Tejido Linfoide/citología , Lisofosfolípidos/metabolismo , Mitocondrias/metabolismo , Esfingosina/análogos & derivados , Linfocitos T/citología , Animales , Proteínas de Transporte de Anión/metabolismo , Movimiento Celular , Supervivencia Celular , Femenino , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Tejido Linfoide/inmunología , Masculino , Ratones , Ratones Transgénicos , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Bazo/citología , Bazo/inmunología , Linfocitos T/inmunologíaRESUMEN
The lymph node periphery is an important site for many immunological functions, from pathogen containment to the differentiation of helper T cells, yet the cues that position cells in this region are largely undefined. Here, through the use of a reporter for the signaling lipid S1P (sphingosine 1-phosphate), we found that cells sensed higher concentrations of S1P in the medullary cords than in the T cell zone and that the S1P transporter SPNS2 on lymphatic endothelial cells generated this gradient. Natural killer (NK) cells are located at the periphery of the lymph node, predominantly in the medulla, and we found that expression of SPNS2, expression of the S1P receptor S1PR5 on NK cells, and expression of the chemokine receptor CXCR4 were all required for NK cell localization during homeostasis and rapid production of interferon-γ by NK cells after challenge. Our findings elucidate the spatial cues for NK cell organization and reveal a previously unknown role for S1P in positioning cells within the medulla.
Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Células Endoteliales/inmunología , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/inmunología , Lisofosfolípidos/metabolismo , Receptores CXCR4/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Proteínas de Transporte de Anión/genética , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Quimiotaxis , Homeostasis , Interferón gamma/metabolismo , Activación de Linfocitos/genética , Lisofosfolípidos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR4/genética , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina/química , Esfingosina/metabolismo , Linfocitos T Colaboradores-Inductores/fisiologíaRESUMEN
Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this "maladaptive repair" phenotype was recapitulated in mice that lack S1P1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis.