Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 382(6671): eadf0966, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943936

RESUMEN

Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes. Loss of NPC1L1 diminishes accessible plasma membrane (PM) cholesterol and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate PM cholesterol and show endoplasmic reticulum cholesterol depletion. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, the Aster pathway can be targeted with a small-molecule inhibitor to manipulate cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.


Asunto(s)
Colesterol en la Dieta , Enterocitos , Absorción Intestinal , Proteínas de Transporte de Membrana , Animales , Ratones , Transporte Biológico , Colesterol en la Dieta/metabolismo , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Enterocitos/metabolismo , Receptores X del Hígado/metabolismo , Humanos , Yeyuno/metabolismo , Ratones Noqueados
2.
bioRxiv ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37503112

RESUMEN

Intestinal cholesterol absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe (EZ), assists in the initial step of dietary cholesterol uptake. However, how cholesterol moves downstream of NPC1L1 is unknown. Here we show that Aster-B and Aster-C are critical for non-vesicular cholesterol movement in enterocytes, bridging NPC1L1 at the plasma membrane (PM) and ACAT2 in the endoplasmic reticulum (ER). Loss of NPC1L1 diminishes accessible PM cholesterol in enterocytes and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate cholesterol at the PM and display evidence of ER cholesterol depletion, including decreased cholesterol ester stores and activation of the SREBP-2 transcriptional pathway. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, we show that the Aster pathway can be targeted with a small molecule inhibitor to manipulate dietary cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption. One-Sentence Summary: Identification of a targetable pathway for regulation of dietary cholesterol absorption.

3.
Nucleic Acids Res ; 51(12): 6006-6019, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37099381

RESUMEN

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.


Asunto(s)
Histona Desacetilasas , Nucleosomas , Cromatina/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Nucleosomas/genética , Factores de Transcripción/metabolismo , Humanos
4.
ACS Chem Biol ; 17(9): 2572-2582, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35973051

RESUMEN

Targeting the lysine deacetylase activity of class I histone deacetylases (HDACs) is potentially beneficial for the treatment of several diseases including human immunodeficiency virus (HIV) infection, Alzheimer's disease, and various cancers. It is therefore important to understand the function and mechanism of action of these enzymes. Class I HDACs act as catalytic components of seven large, multiprotein corepressor complexes. Different HDAC corepressor complexes have specific, nonredundant roles in the cell. It is likely that their specific functions are at least partly influenced by the substrate specificity of the complexes. To address this, we developed chemical tools to probe the specificity of HDAC complexes. We assessed a library of acetyl-lysine-containing substrate peptides and hydroxamic acid-containing inhibitor peptides against the full range of class I HDAC corepressor complexes. The results suggest that site-specific HDAC corepressor complex activity is driven in part by the recognition of the primary amino acid sequence surrounding a particular lysine position in the histone tail.


Asunto(s)
Ácidos Hidroxámicos , Biblioteca de Péptidos , Proteínas Co-Represoras/metabolismo , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Lisina , Péptidos/química
5.
PLoS Pathog ; 18(7): e1010733, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35849637

RESUMEN

Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Microscopía por Crioelectrón , Humanos , Mutación , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Ratas , Receptores Virales/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
J Med Chem ; 65(7): 5642-5659, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35293758

RESUMEN

Class I histone deacetylase (HDAC) enzymes 1, 2, and 3 organize chromatin as the catalytic subunits within seven distinct multiprotein corepressor complexes and are established drug targets. We report optimization studies of benzamide-based Von Hippel-Lindau (VHL) E3-ligase proteolysis targeting chimeras (PROTACs) and for the first time describe transcriptome perturbations resulting from these degraders. By modifying the linker and VHL ligand, we identified PROTACs 7, 9, and 22 with submicromolar DC50 values for HDAC1 and/or HDAC3 in HCT116 cells. A hook effect was observed for HDAC3 that could be negated by modifying the position of attachment of the VHL ligand to the linker. The more potent HDAC1/2 degraders correlated with greater total differentially expressed genes and enhanced apoptosis in HCT116 cells. We demonstrate that HDAC1/2 degradation by PROTACs correlates with enhanced global gene expression and apoptosis, important for the development of more efficacious HDAC therapeutics with reduced side effects.


Asunto(s)
Histona Desacetilasas , Neoplasias , Apoptosis , Quimera/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Proteolisis , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
7.
J Am Chem Soc ; 144(8): 3360-3364, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175758

RESUMEN

We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and ß-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.


Asunto(s)
Histonas , Sirtuinas , Cromatina , Histona Desacetilasas/genética , Histonas/química , Nucleosomas
8.
Mol Cell Biol ; 42(2): e0036321, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871063

RESUMEN

Mutations in thyroid hormone receptor α (TRα), a ligand-inducible transcription factor, cause resistance to thyroid hormone α (RTHα). This disorder is characterized by tissue-specific hormone refractoriness and hypothyroidism due to the inhibition of target gene expression by mutant TRα-corepressor complexes. Using biophysical approaches, we show that RTHα-associated TRα mutants devoid of ligand-dependent transcription activation function unexpectedly retain the ability to bind thyroid hormone. Visualization of the ligand T3 within the crystal structure of a prototypic TRα mutant validates this notion. This finding prompted the synthesis of different thyroid hormone analogues, identifying a lead compound, ES08, which dissociates corepressor from mutant human TRα more efficaciously than T3. ES08 rescues developmental anomalies in a zebrafish model of RTHα and induces target gene expression in TRα mutation-containing cells from an RTHα patient more effectively than T3. Our observations provide proof of principle for developing synthetic ligands that can relieve transcriptional repression by the mutant TRα-corepressor complex for treatment of RTHα.


Asunto(s)
Proteínas Co-Represoras/genética , Expresión Génica/fisiología , Predisposición Genética a la Enfermedad/genética , Hormonas Tiroideas/metabolismo , Animales , Humanos , Mutación/genética , Fenotipo , Receptores de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Triyodotironina/genética
9.
Nat Commun ; 12(1): 819, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547302

RESUMEN

Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/química , Caspasa 8/química , Proteína de Dominio de Muerte Asociada a Fas/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/química , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Dominio Catalítico , Clonación Molecular , Microscopía por Crioelectrón , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Muerte Celular Regulada/genética , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33376205

RESUMEN

The Aster proteins (encoded by the Gramd1a-c genes) contain a ligand-binding fold structurally similar to a START domain and mediate nonvesicular plasma membrane (PM) to endoplasmic reticulum (ER) cholesterol transport. In an effort to develop small molecule modulators of Asters, we identified 20α-hydroxycholesterol (HC) and U18666A as lead compounds. Unfortunately, both 20α-HC and U18666A target other sterol homeostatic proteins, limiting their utility. 20α-HC inhibits sterol regulatory element-binding protein 2 (SREBP2) processing, and U18666A is an inhibitor of the vesicular trafficking protein Niemann-Pick C1 (NPC1). To develop potent and selective Aster inhibitors, we synthesized a series of compounds by modifying 20α-HC and U18666A. Among these, AI (Aster inhibitor)-1l, which has a longer side chain than 20α-HC, selectively bound to Aster-C. The crystal structure of Aster-C in complex with AI-1l suggests that sequence and flexibility differences in the loop that gates the binding cavity may account for the ligand specificity for Aster C. We further identified the U18666A analog AI-3d as a potent inhibitor of all three Aster proteins. AI-3d blocks the ability of Asters to bind and transfer cholesterol in vitro and in cells. Importantly, AI-3d also inhibits the movement of low-density lipoprotein (LDL) cholesterol to the ER, although AI-3d does not block NPC1. This finding positions the nonvesicular Aster pathway downstream of NPC1-dependent vesicular transport in the movement of LDL cholesterol to the ER. Selective Aster inhibitors represent useful chemical tools to distinguish vesicular and nonvesicular sterol transport mechanisms in mammalian cells.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Glicoproteínas de Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Androstenos/farmacología , Animales , Células CHO , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Humanos , Hidroxicolesteroles/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteína Niemann-Pick C1/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Esteroles/metabolismo
11.
Nucleic Acids Res ; 48(22): 12972-12982, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264408

RESUMEN

Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas Represoras/genética , Proteína 4 de Unión a Retinoblastoma/genética , Transactivadores/genética , Secuencia de Aminoácidos/genética , Microscopía por Crioelectrón , Proteínas de Unión al ADN/ultraestructura , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/ultraestructura , Histona Desacetilasas/genética , Histona Desacetilasas/ultraestructura , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/ultraestructura , Nucleosomas/genética , Nucleosomas/ultraestructura , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Represoras/ultraestructura , Proteína 4 de Unión a Retinoblastoma/ultraestructura , Transactivadores/ultraestructura
12.
Proc Natl Acad Sci U S A ; 117(38): 23597-23605, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900932

RESUMEN

Trinucleotide repeat (TNR) expansions cause nearly 20 severe human neurological diseases which are currently untreatable. For some of these diseases, ongoing somatic expansions accelerate disease progression and may influence age of onset. This new knowledge emphasizes the importance of understanding the protein factors that drive expansions. Recent genetic evidence indicates that the mismatch repair factor MutSß (Msh2-Msh3 complex) and the histone deacetylase HDAC3 function in the same pathway to drive triplet repeat expansions. Here we tested the hypothesis that HDAC3 deacetylates MutSß and thereby activates it to drive expansions. The HDAC3-selective inhibitor RGFP966 was used to examine its biological and biochemical consequences in human tissue culture cells. HDAC3 inhibition efficiently suppresses repeat expansion without impeding canonical mismatch repair activity. Five key lysine residues in Msh3 are direct targets of HDAC3 deacetylation. In cells expressing Msh3 in which these lysine residues are mutated to arginine, the inhibitory effect of RGFP966 on expansions is largely bypassed, consistent with the direct deacetylation hypothesis. RGFP966 treatment does not alter MutSß subunit abundance or complex formation but does partially control its subcellular localization. Deacetylation sites in Msh3 overlap a nuclear localization signal, and we show that localization of MutSß is partially dependent on HDAC3 activity. Together, these results indicate that MutSß is a key target of HDAC3 deacetylation and provide insights into an innovative regulatory mechanism for triplet repeat expansions. The results suggest expansion activity may be druggable and support HDAC3-selective inhibition as an attractive therapy in some triplet repeat expansion diseases.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Histona Desacetilasas , Expansión de Repetición de Trinucleótido/genética , Acetilación/efectos de los fármacos , Acrilamidas/farmacología , Línea Celular , Células Cultivadas , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Fenilendiaminas/farmacología
13.
Nat Commun ; 11(1): 3252, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591534

RESUMEN

MiDAC is one of seven distinct, large multi-protein complexes that recruit class I histone deacetylases to the genome to regulate gene expression. Despite implications of involvement in cell cycle regulation and in several cancers, surprisingly little is known about the function or structure of MiDAC. Here we show that MiDAC is important for chromosome alignment during mitosis in cancer cell lines. Mice lacking the MiDAC proteins, DNTTIP1 or MIDEAS, die with identical phenotypes during late embryogenesis due to perturbations in gene expression that result in heart malformation and haematopoietic failure. This suggests that MiDAC has an essential and unique function that cannot be compensated by other HDAC complexes. Consistent with this, the cryoEM structure of MiDAC reveals a unique and distinctive mode of assembly. Four copies of HDAC1 are positioned at the periphery with outward-facing active sites suggesting that the complex may target multiple nucleosomes implying a processive deacetylase function.


Asunto(s)
Desarrollo Embrionario , Histona Desacetilasas/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatina/metabolismo , Cromosomas de los Mamíferos/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Heterocigoto , Homocigoto , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitosis , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Proteínas Nucleares/metabolismo , Dominios Proteicos , Multimerización de Proteína
14.
Chem Commun (Camb) ; 56(32): 4476-4479, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32201871

RESUMEN

We have identified a proteolysis targeting chimera (PROTAC) of class I HDACs 1, 2 and 3. The most active degrader consists of a benzamide HDAC inhibitor, an alkyl linker, and the von Hippel-Lindau E3 ligand. Our PROTAC increased histone acetylation levels and compromised colon cancer HCT116 cell viability, establishing a degradation strategy as an alternative to class I HDAC inhibition.


Asunto(s)
Proteínas Co-Represoras , Histona Desacetilasas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas Co-Represoras/metabolismo , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Proteolisis
15.
Cell Rep ; 30(8): 2699-2711.e8, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101746

RESUMEN

The transcriptional corepressor complex CoREST is one of seven histone deacetylase complexes that regulate the genome through controlling chromatin acetylation. The CoREST complex is unique in containing both histone demethylase and deacetylase enzymes, LSD1 and HDAC1, held together by the RCOR1 scaffold protein. To date, it has been assumed that the enzymes function independently within the complex. Now, we report the assembly of the ternary complex. Using both structural and functional studies, we show that the activity of the two enzymes is closely coupled and that the complex can exist in at least two distinct states with different kinetics. Electron microscopy of the complex reveals a bi-lobed structure with LSD1 and HDAC1 enzymes at opposite ends of the complex. The structure of CoREST in complex with a nucleosome reveals a mode of chromatin engagement that contrasts with previous models.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Demetilasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Desmetilación , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Nucleosomas/metabolismo , Xenopus
16.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527239

RESUMEN

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Asunto(s)
Proteínas CLOCK/química , Elementos E-Box , Hemo/química , Transducción de Señal , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Catálisis , Relojes Circadianos , Criptocromos/química , ADN/química , Electrones , Escherichia coli/metabolismo , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Oxígeno/química , Proteínas Circadianas Period/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transcripción Genética
17.
Hum Mol Genet ; 28(15): 2501-2513, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31067316

RESUMEN

Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.


Asunto(s)
Ensamble y Desensamble de Cromatina , Suturas Craneales/crecimiento & desarrollo , Craneosinostosis/metabolismo , Mutación Missense , Nucleosomas/metabolismo , Osteogénesis , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Animales , Suturas Craneales/metabolismo , Craneosinostosis/genética , Craneosinostosis/fisiopatología , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Lactante , Masculino , Ratones , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Población Blanca , Secuenciación Completa del Genoma
18.
Org Lett ; 21(9): 3178-3182, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30998366

RESUMEN

Syntheses of Fmoc amino acids having zinc-binding groups were prepared and incorporated into substrate inhibitor H3K27 peptides using Fmoc/tBu solid-phase peptide synthesis (SPPS). Peptide 11, prepared using Fmoc-Asu(NHOtBu)-OH, is a potent inhibitor (IC50 = 390 nM) of the core NuRD corepressor complex (HDAC1-MTA1-RBBP4). The Fmoc amino acids have the potential to facilitate the rapid preparation of substrate peptidomimetic inhibitor (SPI) libraries in the search for selective HDAC inhibitors.


Asunto(s)
Aminoácidos/química , Fluorenos/química , Inhibidores de Histona Desacetilasas/síntesis química , Peptidomiméticos/síntesis química , Zinc/química , Quelantes/química , Complejos de Coordinación/química , Níquel/química , Técnicas de Síntesis en Fase Sólida , Estereoisomerismo
19.
Nat Commun ; 9(1): 3798, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228260

RESUMEN

Transcriptional regulation by chromatin is a highly dynamic process directed through the recruitment and coordinated action of epigenetic modifiers and readers of these modifications. Using an unbiased proteomic approach to find interactors of H3K36me3, a modification enriched on active chromatin, here we identify PWWP2A and HDAC2 among the top interactors. PWWP2A and its paralog PWWP2B form a stable complex with NuRD subunits MTA1/2/3:HDAC1/2:RBBP4/7, but not with MBD2/3, p66α/ß, and CHD3/4. PWWP2A competes with MBD3 for binding to MTA1, thus defining a new variant NuRD complex that is mutually exclusive with the MBD2/3 containing NuRD. In mESCs, PWWP2A/B is most enriched at highly transcribed genes. Loss of PWWP2A/B leads to increases in histone acetylation predominantly at highly expressed genes, accompanied by decreases in Pol II elongation. Collectively, these findings suggest a role for PWWP2A/B in regulating transcription through the fine-tuning of histone acetylation dynamics at actively transcribed genes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Acetilación , Animales , Proteínas Cromosómicas no Histona/genética , Metilación de ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Ratones , Células Madre Embrionarias de Ratones , Nucleosomas/metabolismo , Proteómica
20.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220461

RESUMEN

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Asunto(s)
HDL-Colesterol/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de la Membrana/ultraestructura , Células 3T3 , Animales , Transporte Biológico/fisiología , Antígenos CD36/metabolismo , Células CHO , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Alineación de Secuencia , Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...