Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464218

RESUMEN

Metabolism has emerged as a key factor in homeostasis and disease including cancer. Yet, little is known about the heterogeneity of metabolic activity of cancer cells due to the lack of tools to directly probe it. Here, we present a novel method, 13C-SpaceM for spatial single-cell isotope tracing of glucose-dependent de novo lipogenesis. The method combines imaging mass spectrometry for spatially-resolved detection of 13C6-glucose-derived 13C label incorporated into esterified fatty acids with microscopy and computational methods for data integration and analysis. We validated 13C-SpaceM on a spatially-heterogeneous normoxia-hypoxia model of liver cancer cells. Investigating cultured cells, we revealed single-cell heterogeneity of lipogenic acetyl-CoA pool labelling degree upon ACLY knockdown that is hidden in the bulk analysis and its effect on synthesis of individual fatty acids. Next, we adapted 13C-SpaceM to analyze tissue sections of mice harboring isocitrate dehydrogenase (IDH)-mutant gliomas. We found a strong induction of de novo fatty acid synthesis in the tumor tissue compared to the surrounding brain. Comparison of fatty acid isotopologue patterns revealed elevated uptake of mono-unsaturated and essential fatty acids in the tumor. Furthermore, our analysis uncovered substantial spatial heterogeneity in the labelling of the lipogenic acetyl-CoA pool indicative of metabolic reprogramming during microenvironmental adaptation. Overall, 13C-SpaceM enables novel ways for spatial probing of metabolic activity at the single cell level. Additionally, this methodology provides unprecedented insight into fatty acid uptake, synthesis and modification in normal and cancerous tissues.

2.
Nat Commun ; 14(1): 2876, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208361

RESUMEN

Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.


Asunto(s)
Ecosistema , Glioblastoma , Animales , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Metabolómica/métodos , Glioblastoma/diagnóstico por imagen , Ácidos Grasos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Microambiente Tumoral
3.
Nat Chem Biol ; 19(7): 837-845, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36973440

RESUMEN

Although nicotinamide adenine dinucleotide phosphate (NADPH) is produced and consumed in both the cytosol and mitochondria, the relationship between NADPH fluxes in each compartment has been difficult to assess due to technological limitations. Here we introduce an approach to resolve cytosolic and mitochondrial NADPH fluxes that relies on tracing deuterium from glucose to metabolites of proline biosynthesis localized to either the cytosol or mitochondria. We introduced NADPH challenges in either the cytosol or mitochondria of cells by using isocitrate dehydrogenase mutations, administering chemotherapeutics or with genetically encoded NADPH oxidase. We found that cytosolic challenges influenced NADPH fluxes in the cytosol but not NADPH fluxes in mitochondria, and vice versa. This work highlights the value of using proline labeling as a reporter system to study compartmentalized metabolism and reveals that NADPH homeostasis in the cytosolic and mitochondrial locations of a cell are independently regulated, with no evidence for NADPH shuttle activity.


Asunto(s)
Mitocondrias , Citosol/metabolismo , NADP/metabolismo , Mitocondrias/metabolismo
4.
Geroscience ; 45(1): 415-426, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35997888

RESUMEN

With the goal of identifying metabolites that significantly correlate with the protective e2 allele of the apolipoprotein E (APOE) gene, we established a consortium of five studies of healthy aging and extreme human longevity with 3545 participants. This consortium includes the New England Centenarian Study, the Baltimore Longitudinal Study of Aging, the Arivale study, the Longevity Genes Project/LonGenity studies, and the Long Life Family Study. We analyzed the association between APOE genotype groups E2 (e2e2 and e2e3 genotypes, N = 544), E3 (e3e3 genotypes, N = 2299), and E4 (e3e4 and e4e4 genotypes, N = 702) with metabolite profiles in the five studies and used fixed effect meta-analysis to aggregate the results. Our meta-analysis identified a signature of 19 metabolites that are significantly associated with the E2 genotype group at FDR < 10%. The group includes 10 glycerolipids and 4 glycerophospholipids that were all higher in E2 carriers compared to E3, with fold change ranging from 1.08 to 1.25. The organic acid 6-hydroxyindole sulfate, previously linked to changes in gut microbiome that were reflective of healthy aging and longevity, was also higher in E2 carriers compared to E3 carriers. Three sterol lipids and one sphingolipid species were significantly lower in carriers of the E2 genotype group. For some of these metabolites, the effect of the E2 genotype opposed the age effect. No metabolites reached a statistically significant association with the E4 group. This work confirms and expands previous results connecting the APOE gene to lipid regulation and suggests new links between the e2 allele, lipid metabolism, aging, and the gut-brain axis.


Asunto(s)
Apolipoproteínas E , Polimorfismo Genético , Anciano de 80 o más Años , Humanos , Apolipoproteína E2/genética , Alelos , Estudios Longitudinales , Apolipoproteínas E/genética
5.
Anal Chem ; 94(50): 17370-17378, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36475608

RESUMEN

The success of precision medicine relies upon collecting data from many individuals at the population level. Although advancing technologies have made such large-scale studies increasingly feasible in some disciplines such as genomics, the standard workflows currently implemented in untargeted metabolomics were developed for small sample numbers and are limited by the processing of liquid chromatography/mass spectrometry data. Here we present an untargeted metabolomics workflow that is designed to support large-scale projects with thousands of biospecimens. Our strategy is to first evaluate a reference sample created by pooling aliquots of biospecimens from the cohort. The reference sample captures the chemical complexity of the biological matrix in a small number of analytical runs, which can subsequently be processed with conventional software such as XCMS. Although this generates thousands of so-called features, most do not correspond to unique compounds from the samples and can be filtered with established informatics tools. The features remaining represent a comprehensive set of biologically relevant reference chemicals that can then be extracted from the entire cohort's raw data on the basis of m/z values and retention times by using Skyline. To demonstrate applicability to large cohorts, we evaluated >2000 human plasma samples with our workflow. We focused our analysis on 360 identified compounds, but we also profiled >3000 unknowns from the plasma samples. As part of our workflow, we tested 14 different computational approaches for batch correction and found that a random forest-based approach outperformed the others. The corrected data revealed distinct profiles that were associated with the geographic location of participants.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Flujo de Trabajo , Metabolómica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos
6.
Mol Cell ; 82(17): 3270-3283.e9, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973426

RESUMEN

Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.


Asunto(s)
Malatos , NAD , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Glucólisis , Ácido Láctico , Malatos/metabolismo , NAD/metabolismo
8.
Nat Methods ; 18(11): 1370-1376, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725482

RESUMEN

Comprehensive metabolome analyses are essential for biomedical, environmental, and biotechnological research. However, current MS1- and MS2-based acquisition and data analysis strategies in untargeted metabolomics result in low identification rates of metabolites. Here we present HERMES, a molecular-formula-oriented and peak-detection-free method that uses raw LC/MS1 information to optimize MS2 acquisition. Investigating environmental water, Escherichia coli, and human plasma extracts with HERMES, we achieved an increased biological specificity of MS2 scans, leading to improved mass spectral similarity scoring and identification rates when compared with a state-of-the-art data-dependent acquisition (DDA) approach. Thus, HERMES improves sensitivity, selectivity, and annotation of metabolites. HERMES is available as an R package with a user-friendly graphical interface for data analysis and visualization.


Asunto(s)
Algoritmos , Escherichia coli/metabolismo , Metaboloma , Metabolómica/métodos , Plasma/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cromatografía Liquida/métodos , Humanos , Plasma/química , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis
10.
ACS Meas Sci Au ; 1(1): 35-45, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34476422

RESUMEN

The thousands of features commonly observed when performing untargeted metabolomics with quadrupole time-of-flight (QTOF) and Orbitrap mass spectrometers often correspond to only a few hundred unique metabolites of biological origin, which is in the range of what can be assayed in a single targeted metabolomics experiment by using a triple quadrupole (QqQ) mass spectrometer. A major benefit of performing targeted metabolomics with QqQ mass spectrometry is the affordability of the instruments relative to high-resolution QTOF and Orbitrap platforms. Optimizing targeted methods to profile hundreds of metabolites on a QqQ mass spectrometer, however, has historically been limited by the availability of authentic standards, particularly for "unknowns" that have yet to be structurally identified. Here, we report a strategy to develop multiple reaction monitoring (MRM) methods for QqQ instruments on the basis of high-resolution spectra, thereby enabling us to use data from untargeted metabolomics to design targeted experiments without the need for authentic standards. We demonstrate that using high-resolution fragmentation data alone to design MRM methods results in the same quantitative performance as when methods are optimized by measuring authentic standards on QqQ instruments, as is conventionally done. The approach was validated by showing that Orbitrap ID-X data can be used to establish MRM methods on a Thermo TSQ Altis and two Agilent QqQs for hundreds of metabolites, including unknowns, without a dependence on standards. Finally, we highlight an application where metabolite profiling was performed on an ID-X and a QqQ by using the strategy introduced here, with both data sets yielding the same result. The described approach therefore allows us to use QqQ instruments, which are often associated with targeted metabolomics, to profile knowns and unknowns at a comprehensive scale that is typical of untargeted metabolomics.

11.
Nat Commun ; 12(1): 5214, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471131

RESUMEN

Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are not well understood. Herein, we show that disruption of the box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in cultured cells. This protection from metabolic stress is associated with broad reprogramming of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a role for SNORA73 in the regulation of metabolism and lipotoxicity.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Sustancias Protectoras/farmacología , ARN Nucleolar Pequeño/metabolismo , Animales , Células CHO , Muerte Celular/efectos de los fármacos , Cricetulus , Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/genética , Homeostasis , Inflamación , Metabolismo de los Lípidos , Lípidos/farmacología , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , ARN Largo no Codificante , ARN Nucleolar Pequeño/genética , Transducción de Señal/efectos de los fármacos
12.
Nat Methods ; 18(7): 779-787, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34239103

RESUMEN

Chimeric MS/MS spectra contain fragments from multiple precursor ions and therefore hinder compound identification in metabolomics. Historically, deconvolution of these chimeric spectra has been challenging and relied on specific experimental methods that introduce variation in the ratios of precursor ions between multiple tandem mass spectrometry (MS/MS) scans. DecoID provides a complementary, method-independent approach where database spectra are computationally mixed to match an experimentally acquired spectrum by using LASSO regression. We validated that DecoID increases the number of identified metabolites in MS/MS datasets from both data-independent and data-dependent acquisition without increasing the false discovery rate. We applied DecoID to publicly available data from the MetaboLights repository and to data from human plasma, where DecoID increased the number of identified metabolites from data-dependent acquisition data by over 30% compared to direct spectral matching. DecoID is compatible with any user-defined MS/MS database and provides automated searching for some of the largest MS/MS databases currently available.


Asunto(s)
Algoritmos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Sangre/metabolismo , Bases de Datos Factuales , Escherichia coli/metabolismo , Humanos , Reproducibilidad de los Resultados , Saccharomycetales/metabolismo , Procesamiento de Señales Asistido por Computador
13.
Cell Rep Med ; 2(8): 100369, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34308390

RESUMEN

There is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that medical resources can be optimally allocated and rapid treatment can be administered early in the disease course, when clinical management is most effective. To aid in the prognostic classification of disease severity, we perform untargeted metabolomics on plasma from 339 patients, with samples collected at six longitudinal time points. Using the temporal metabolic profiles and machine learning, we build a predictive model of disease severity. We discover that a panel of metabolites measured at the time of study entry successfully determines disease severity. Through analysis of longitudinal samples, we confirm that most of these markers are directly related to disease progression and that their levels return to baseline upon disease recovery. Finally, we validate that these metabolites are also altered in a hamster model of COVID-19.


Asunto(s)
COVID-19/metabolismo , Plasma/metabolismo , SARS-CoV-2/metabolismo , Adulto , Biomarcadores/sangre , Femenino , Humanos , Estudios Longitudinales , Aprendizaje Automático , Masculino , Metaboloma , Metabolómica/métodos , Persona de Mediana Edad , Gravedad del Paciente , Plasma/química , Pronóstico , Índice de Severidad de la Enfermedad
14.
Anal Chim Acta ; 1149: 338210, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33551064

RESUMEN

When using liquid chromatography/mass spectrometry (LC/MS) to perform untargeted metabolomics, it is common to detect thousands of features from a biological extract. Although it is impractical to collect non-chimeric MS/MS data for each in a single chromatographic run, this is generally unnecessary because most features do not correspond to unique metabolites of biological relevance. Here we show that relatively simple data-processing strategies that can be applied on the fly during acquisition of data with an Orbitrap ID-X, such as blank subtraction and well-established adduct or isotope calculations, decrease the number of features to target for MS/MS analysis by up to an order of magnitude for various types of biological matrices. We demonstrate that annotating these non-biological contaminants and redundancies in real time during data acquisition enables comprehensive MS/MS data to be acquired on each remaining feature at a single collision energy. To ensure that an appropriate collision energy is applied, we introduce a method using a series of hidden ion-trap scans in an Orbitrap ID-X to find an optimal value for each feature that can then be applied in a subsequent high-resolution Orbitrap scan. Data from 100 metabolite standards indicate that this real-time optimization of collision energies leads to more informative MS/MS patterns compared to using a single fixed collision energy alone. As a benchmark to evaluate the overall workflow, we manually annotated unique biological features by independently subjecting E. coli samples to a credentialing analysis. While credentialing led to a more rigorous reduction in feature number, on-the-fly annotation with blank subtraction on an Orbitrap ID-X did not inappropriately discard unique biological metabolites. Taken together, our results reveal that optimal fragmentation data can be obtained in a single LC/MS/MS run for >90% of the unique biological metabolites in a sample when features are annotated during acquisition and collision energies are selected by using parallel mass spectrometry detection.


Asunto(s)
Escherichia coli , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica , Flujo de Trabajo
15.
medRxiv ; 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33564793

RESUMEN

There is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that scarce medical resources can be optimally allocated and rapid treatment can be administered early in the disease course, when clinical management is most effective. To aid in the prognostic classification of disease severity, we performed untargeted metabolomics profiling of 341 patients with plasma samples collected at six longitudinal time points. Using the temporal metabolic profiles and machine learning, we then built a predictive model of disease severity. We determined that the levels of 25 metabolites measured at the time of hospital admission successfully predict future disease severity. Through analysis of longitudinal samples, we confirmed that these prognostic markers are directly related to disease progression and that their levels are restored to baseline upon disease recovery. Finally, we validated that these metabolites are also altered in a hamster model of COVID-19. Our results indicate that metabolic changes associated with COVID-19 severity can be effectively used to stratify patients and inform resource allocation during the pandemic.

16.
Metallomics ; 11(10): 1716-1728, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31497817

RESUMEN

Resistance development is a major obstacle for platinum-based chemotherapy, with the anticancer drug oxaliplatin being no exception. Acquired resistance is often associated with altered drug accumulation. In this work we introduce a novel -omics workflow enabling the parallel study of platinum drug uptake and its distribution between nucleus/protein and small molecule fraction along with metabolic changes after different treatment time points. This integrated metallomics/metabolomics approach is facilitated by a tailored sample preparation workflow suitable for preclinical studies on adherent cancer cell models. Inductively coupled plasma mass spectrometry monitors the platinum drug, while the metabolomics tool-set is provided by hydrophilic interaction liquid chromatography combined with high-resolution Orbitrap mass spectrometry. The implemented method covers biochemical key pathways of cancer cell metabolism as shown by a panel of >130 metabolite standards. Furthermore, the addition of yeast-based 13C-enriched internal standards upon extraction enabled a novel targeted/untargeted analysis strategy. In this study we used our method to compare an oxaliplatin sensitive human colon cancer cell line (HCT116) and its corresponding resistant model. In the acquired oxaliplatin resistant cells distinct differences in oxaliplatin accumulation correlated with differences in metabolomic rearrangements. Using this multi-omics approach for platinum-treated samples facilitates the generation of novel hypotheses regarding the susceptibility and resistance towards oxaliplatin.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Oxaliplatino/farmacología , Antineoplásicos/farmacocinética , Cromatografía Liquida/métodos , Neoplasias del Colon/metabolismo , Resistencia a Antineoplásicos , Células HCT116 , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Oxaliplatino/farmacocinética
17.
Anal Bioanal Chem ; 411(14): 3103-3113, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30972471

RESUMEN

13C metabolite tracer and metabolic flux analyses require upfront experimental planning and validation tools. Here, we present a validation scheme including a comparison of different LC methods that allow for customization of analytical strategies for tracer studies with regard to the targeted metabolites. As the measurement of significant changes in labeling patterns depends on the spectral accuracy, we investigate this aspect comprehensively for high-resolution orbitrap mass spectrometry combined with reversed-phase chromatography, hydrophilic interaction liquid chromatography, or anion-exchange chromatography. Moreover, we propose a quality control protocol based on (1) a metabolite containing selenium to assess the instrument performance and on (2) in vivo synthesized isotopically enriched Pichia pastoris to validate the accuracy of carbon isotopologue distributions (CIDs), in this case considering each isotopologue of a targeted metabolite panel. Finally, validation involved a thorough assessment of procedural blanks and matrix interferences. We compared the analytical figures of merit regarding CID determination for over 40 metabolites between the three methods. Excellent precisions of less than 1% and trueness bias as small as 0.01-1% were found for the majority of compounds, whereas the CID determination of a small fraction was affected by contaminants. For most compounds, changes of labeling pattern as low as 1% could be measured. Graphical abstract.


Asunto(s)
Isótopos de Carbono/análisis , Cromatografía por Intercambio Iónico/métodos , Cromatografía de Fase Inversa/métodos , Espectrometría de Masas/métodos , Estudios de Validación como Asunto , Resinas de Intercambio Aniónico/química , Isótopos de Carbono/normas , Interacciones Hidrofóbicas e Hidrofílicas , Pichia/química , Estándares de Referencia , Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA