Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 40, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906636

RESUMEN

The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedad de Parkinson , Proteínas tau , Humanos , Encéfalo/metabolismo , Genotipo , Haplotipos , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Proteínas tau/genética
2.
Cells ; 12(2)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672158

RESUMEN

Multiple system atrophy of the parkinsonian type (MSA-P) is a rare, fatal neurodegenerative disease with sporadic onset. It is still unknown if MSA-P is a primary oligodendropathy or caused by neuronal pathophysiology leading to severe, α-synuclein-associated neurodegeneration, mainly in the striatum. In this study, we generated and differentiated induced pluripotent stem cells (iPSCs) from patients with the clinical diagnosis of probable MSA-P (n = 3) and from three matched healthy controls into GABAergic striatal medium spiny neurons (MSNs). We found a significantly elevated release and neuronal distribution for α-synuclein, as well as hypoexcitability in the MSNs derived from the MSA-P patients compared to the healthy controls. These data suggest that the striatal hypoexcitable neurons of MSA-P patients contribute to a pathological α-synuclein burden which is likely to spread to neighboring cells and projection targets, facilitating disease progression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia de Múltiples Sistemas , Humanos , Atrofia de Múltiples Sistemas/patología , alfa-Sinucleína , Células Madre Pluripotentes Inducidas/patología , Neuronas Espinosas Medianas , Neuronas GABAérgicas/patología
3.
Mov Disord ; 38(4): 589-603, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36692025

RESUMEN

BACKGROUND: Because human fetal ventral mesencephalic tissue grafts provide promising results in ameliorating Parkinson's disease-implicated motor dysfunctions, human fetal midbrain-derived dopamine neuronal precursor cells are considered good candidates for cell-based therapy for Parkinson's disease in that large quantities of cells can be supplied through a good manufacturing practice-compliant system. OBJECTIVE: We conducted a prospective, phase I/IIa, dose-escalation, open-label "first-in-human" clinical trial with fetal neural precursor cells to assess their safety and therapeutic efficacy in patients with idiopathic Parkinson's disease. METHODS: Fifteen patients were assigned to receive three different doses of cells (4 × 106 , 12 × 106 , and 40 × 106 cells) and completed a 12-month follow-up. The primary outcome was safety, by measuring the presence of grade 3 or higher cells according to National Cancer Institute guidelines and any contaminated cells. Secondary outcomes assessed motor and neurocognitive function, as well as the level of dopamine transporters, by positron emission tomography-computed tomography. RESULTS: Although a pronation-supination and hand/arm movement performance was remarkably enhanced in all three groups (all P < 0.05), the medium- and high-dose-treated groups exhibited significant improvement in Unified Parkinson's Disease Rating Scale Part III only up to 26.16% and 40%, respectively, at 12 months after transplantation without any serious clinical complications or graft-induced dyskinesia in all patients. However, the motor improvements did not correlate with increase in the dopamine transporter on positron emission tomography images. CONCLUSIONS: Our results primarily demonstrate the safety and plausible dose-dependent efficacy of human fetal midbrain-derived dopamine neuronal precursor cells for idiopathic Parkinson's disease. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Células-Madre Neurales , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Mesencéfalo/diagnóstico por imagen
4.
Front Cell Dev Biol ; 9: 726866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532319

RESUMEN

The H1 haplotype of the microtubule-associated protein tau (MAPT) gene is a common genetic risk factor for some neurodegenerative diseases such as progressive supranuclear palsy, corticobasal degeneration, and Parkinson's disease. The molecular mechanism causing the increased risk for the named diseases, however, remains unclear. In this paper, we present a valuable tool of eight small molecule neural precursor cell lines (smNPC) homozygous for the MAPT haplotypes (four H1/H1 and four H2/H2 cell lines), which can be used to identify MAPT-dependent phenotypes. The employed differentiation protocol is fast due to overexpression of NEUROGENIN-2 and therefore suitable for high-throughput approaches. A basic characterization of all human cell lines was performed, and their TAU and α-SYNUCLEIN profiles were compared during a differentiation time of 30 days. We could identify higher levels of conformationally altered TAU in cell lines carrying the H2 haplotype. Additionally, we found increased expression levels of α-SYNUCLEIN in H1/H1 cells. With this resource, we aim to fill a gap in neurodegenerative disease modeling with induced pluripotent stem cells (iPSC) for sporadic tauopathies.

5.
Nat Cell Biol ; 23(6): 652-663, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34083785

RESUMEN

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.


Asunto(s)
Empalme Alternativo , Factores de Transcripción Forkhead/metabolismo , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/metabolismo , Proteómica , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Exones , Factores de Transcripción Forkhead/genética , Células HEK293 , Humanos , Isoformas de Proteínas , Proteoma , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Análisis de la Célula Individual , Proteínas tau/genética
6.
Cells ; 10(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807497

RESUMEN

BACKGROUND: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular-subventricular zone of the lateral wall of the lateral ventricles (V-SVZ) and has been controversially discussed in so-called "non-neurogenic" brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. OBJECTIVE/HYPOTHESIS: To analyze the influence of chronic-progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V-SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). METHODS: We used Thy1-m[A30P]h α synuclein mice and Leu9'Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V-SVZ, the aqueduct and the fourth ventricle. RESULTS: In both animal models, overall proliferative activity in the V-SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V-SVZ in Leu9'Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. CONCLUSIONS: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely.


Asunto(s)
Dopamina/deficiencia , Mesencéfalo/fisiología , Neurogénesis , Animales , Proliferación Celular , Humanos , Ventrículos Laterales/fisiología , Ratones Endogámicos C57BL , Receptores Nicotínicos/metabolismo , Rombencéfalo/fisiología , alfa-Sinucleína/metabolismo
7.
Front Cell Dev Biol ; 9: 561086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748099

RESUMEN

Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson's disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.

8.
Prog Neurobiol ; 180: 101644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31238088

RESUMEN

Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Humanos , Neuropatología/métodos
9.
Nat Commun ; 9(1): 2929, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050033

RESUMEN

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Proteínas de Homeodominio/metabolismo , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Factores de Transcripción/metabolismo , Anciano , Anciano de 80 o más Años , Femenino , Proteínas de Homeodominio/genética , Humanos , Masculino , Factores de Transcripción/genética , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Stem Cells Dev ; 27(14): 976-984, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29779467

RESUMEN

Voltage-gated sodium and calcium channels as well as transient receptor potential (TRP) channels are expressed during the differentiation of human neural progenitor cells (hNPCs) and are likely to be involved in regulating neurogenesis. However, the molecular composition of these ion channels in proliferating and differentiating hNPCs is largely unknown. In this study, we investigated fetal mesencephalic hNPCs in respect to their sodium, calcium, and TRP channel subunit expression and function. Quantitative real-time polymerase chain reaction indicated a significant upregulation of voltage-gated sodium and calcium channel subunits in hNPCs after differentiation for 3 weeks in vitro. In contrast, the TRP channel expression did not increase significantly during hNPC maturation. Intracellular Ca2+ measurements showed the marked reduction of KCl-induced Ca2+ transients through inhibition of voltage-gated Ca2+ channels by verapamil and mibefradil in differentiated hNPCs. Application of TRP channel agonists induced intracellular Ca2+ peaks already in proliferating hNPCs without affecting their cell division. The coincubation of hNPCs with TRP channel agonists pregnenolone sulfate or RN1747 did not have any significant effect on their proliferation and differentiation. These data indicate that hNPCs derived from fetal midbrain tissue acquire essential voltage-gated sodium and calcium channel properties during neuronal maturation in vitro. An early role of TRP channels in neurogenesis which may be important for regenerative clinical applications or cellular models could not be elucidated using hNPCs.


Asunto(s)
Canales de Calcio/genética , Células-Madre Neurales/metabolismo , Células Madre/metabolismo , Canales de Sodio Activados por Voltaje/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Feto , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Mesencéfalo/citología , Mesencéfalo/metabolismo , Células-Madre Neurales/efectos de los fármacos , Pregnenolona/farmacología , Células Madre/efectos de los fármacos , Sulfonamidas/farmacología , Canal Catiónico TRPA1/genética
11.
Stem Cells Transl Med ; 6(2): 576-588, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28191758

RESUMEN

We have developed a good manufacturing practice for long-term cultivation of fetal human midbrain-derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region-specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum-free conditions and standardized operating protocols under clean-room conditions. Long-term-cultivated midbrain-derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9-specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain-derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain-derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long-term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high-content or high-throughput screening. Stem Cells Translational Medicine 2017;6:576-588.


Asunto(s)
Proliferación Celular , Neuronas Dopaminérgicas/fisiología , Mesencéfalo/embriología , Células-Madre Neurales/fisiología , Neurogénesis , Trastornos Parkinsonianos/cirugía , Trasplante de Células Madre/métodos , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Femenino , Edad Gestacional , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Actividad Motora , Células-Madre Neurales/metabolismo , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Fenotipo , Ratas Sprague-Dawley , Recuperación de la Función , Medición de Riesgo , Trasplante de Células Madre/efectos adversos , Teratoma/etiología , Teratoma/patología , Factores de Tiempo
12.
J Tissue Eng Regen Med ; 11(3): 751-764, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-25641599

RESUMEN

Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/trasplante , Médula Espinal/citología , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Linaje de la Célula , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inyecciones Espinales , Ratones Transgénicos , Actividad Motora , Células-Madre Neurales/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trasplante de Células Madre , Análisis de Supervivencia
13.
J Neuroinflammation ; 12: 184, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26419927

RESUMEN

BACKGROUND: Fingolimod (FTY720) is the first sphingosine-1-phosphate (S1P) receptor modulator approved for the treatment of multiple sclerosis. The phosphorylated active metabolite FTY720-phosphate (FTY-P) interferes with lymphocyte trafficking. In addition, it accumulates in the CNS and reduces brain atrophy in multiple sclerosis (MS), and neuroprotective effects are hypothesized. METHODS: Human primary astrocytes as well as human astrocytoma cells were stimulated with FTY-P or S1P. We analyzed gene expression by a genome-wide microarray and validated induced candidate genes by quantitative PCR (qPCR) and ELISA. To identify the S1P-receptor subtypes involved, we applied a membrane-impermeable S1P analog (dihydro-S1P), receptor subtype specific agonists and antagonists, as well as RNAi silencing. RESULTS: FTY-P induced leukemia inhibitory factor (LIF), interleukin 11 (IL11), and heparin-binding EGF-like growth factor (HBEGF) mRNA, as well as secretion of LIF and IL11 protein. In order to mimic an inflammatory milieu as observed in active MS lesions, we combined FTY-P application with tumor necrosis factor (TNF). In the presence of this key inflammatory cytokine, FTY-P synergistically induced LIF, HBEGF, and IL11 mRNA, as well as secretion of LIF and IL11 protein. TNF itself induced inflammatory, B-cell promoting, and antiviral factors (CXCL10, BAFF, MX1, and OAS2). Their induction was blocked by FTY-P. After continuous exposure of cells to FTY-P or S1P for up to 7 days, the extent of induction of neurotrophic factors and the suppression of TNF-induced inflammatory genes declined but was still detectable. The induction of neurotrophic factors was mediated via surface S1P receptors 1 (S1PR1) and 3 (S1PR3). CONCLUSIONS: We identified effects of FTY-P on astrocytes, namely induction of neurotrophic mediators (LIF, HBEGF, and IL11) and inhibition of TNF-induced inflammatory genes (CXCL10, BAFF, MX1, and OAS2). This supports the view that a part of the effects of fingolimod may be mediated via astrocytes.


Asunto(s)
Astrocitos/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Células-Madre Neurales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Cuerpo Estriado/citología , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Feto/citología , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Humanos , Interleucina-11/genética , Interleucina-11/metabolismo , Lisofosfolípidos/farmacología , Análisis por Micromatrices , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero , ARN Interferente Pequeño/farmacología , Esfingosina/análogos & derivados , Esfingosina/farmacología , Factores de Tiempo
14.
Stem Cells Transl Med ; 4(10): 1223-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26304036

RESUMEN

UNLABELLED: Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. SIGNIFICANCE: Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use.


Asunto(s)
Células Madre Mesenquimatosas/citología , Adulto , Animales , Encéfalo/embriología , Diferenciación Celular , Linaje de la Célula , Niño , Femenino , Células Madre Fetales/citología , Perfilación de la Expresión Génica , Supervivencia de Injerto , Xenoinjertos , Hipocampo/citología , Humanos , Masculino , Mesodermo , Ratones , Persona de Mediana Edad , Placa Neural , Especificidad de Órganos , Pericitos/citología , Transcriptoma , Sustancia Blanca/citología , Adulto Joven
15.
Tissue Eng Part A ; 21(3-4): 654-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25257211

RESUMEN

Advances in mechanistic knowledge of human neurological disorders have been hindered by the lack of adequate human in vitro models. Three-dimensional (3D) cellular models displaying higher biological relevance are gaining momentum; however, their lack of robustness and scarcity of analytical tools adapted to three dimensions hampers their widespread implementation. Herein we show that human midbrain-derived neural progenitor cells, cultured as 3D neurospheres in stirred culture systems, reproducibly differentiate into complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Moreover, an extensive toolbox of analytical methodologies has been adapted to 3D neural cell models, allowing molecular and phenotypic profiling and interrogation. The generated neurons underwent synaptogenesis and elicit spontaneous Ca(2+) transients. Synaptic vesicle trafficking and release of dopamine in response to depolarizing stimuli was also observed. Under whole-cell current-and-voltage clamp, recordings showed polarized neurons (Vm=-70 mV) and voltage-dependent potassium currents, which included A-type-like currents. Glutamate-induced currents sensitive to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate antagonists revealed the existence of functional glutamate receptors. Molecular and phenotypic profiling showed recapitulation of midbrain patterning events, and remodeling toward increased similarity to human brain features, such as extracellular matrix composition and metabolic signature. We have developed a robust and reproducible human 3D neural cell model, which may be extended to patient-derived induced pluripotent stem cells, broadening the applicability of this model.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Impresión Tridimensional , Biomimética/métodos , Diferenciación Celular/fisiología , Células Cultivadas , Dopamina , Humanos , Ingeniería de Tejidos/métodos
16.
Methods ; 56(3): 452-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22433395

RESUMEN

Central nervous system (CNS) disorders remain a formidable challenge for the development of efficient therapies. Cell and gene therapy approaches are promising alternatives that can have a tremendous impact by treating the causes of the disease rather than the symptoms, providing specific targeting and prolonged duration of action. Hampering translation of gene-based therapeutic treatments of neurodegenerative diseases from experimental to clinical gene therapy is the lack of valid and reliable pre-clinical models that can contribute to evaluate feasibility and safety. Herein we describe a robust and reproducible methodology for the generation of 3D in vitro models of the human CNS following a systematic technological approach based on stirred culture systems. We took advantage of human midbrain-derived neural progenitor cells (hmNPCs) capability to differentiate into the various neural phenotypes and of their commitment to the dopaminergic lineage to generate differentiated neurospheres enriched in dopaminergic neurons. Furthermore, we describe a protocol for efficient gene transfer into differentiated neurospheres using CAV-2 viral vectors and stable expression of the transgene for at least 10 days. CAV-2 vectors, derived from canine adenovirus type 2, are promising tools to understand and treat neurodegenerative diseases, in particular Parkinson's disease. CAV-2 vectors preferentially transduce neurons and have an impressive level of axonal retrograde transport in vivo. Our model provides a practical and versatile in vitro approach to study the CNS in a 3D cellular context. With the successful differentiation and subsequent genetic modification of neurospheres we are increasing the collection of tools available for neuroscience research and contributing for the implementation and widespread utilization of 3D cellular CNS models. These can be applied to study neurodegenerative diseases such as Parkinson's disease; to study the interaction of viral vectors of therapeutic potential within human neural cell populations, thus enabling the introduction of specific therapeutic genes for treatment of CNS pathologies; to study the fate and effect of delivered therapeutic genes; to study toxicological effects. Furthermore these methodologies may be extended to other sources of human neural stem cells, such as human pluripotent stem cells, including patient-derived induced pluripotent stem cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neuronas Dopaminérgicas/citología , Células-Madre Neurales/citología , Diferenciación Celular , Humanos , Reproducibilidad de los Resultados , Transducción Genética
17.
Stem Cells ; 30(3): 570-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213586

RESUMEN

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by retroviral overexpression of the transcription factors Oct4, Sox2, Klf4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk for chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC, albeit at lower efficiency. To elucidate the influence of factor reduction on subsequent differentiation, we compared the efficiency of neuronal differentiation in iPSC generated from postnatal murine neural stem cells with either one (Oct4; iPSC(1F-NSC) ), two (Oct4, Klf4; iPSC(2F-NSC) ), or all four factors (iPSC(4F-NSC) ) with those of embryonic stem cells (ESCs) and iPSC produced from fibroblasts with all four factors (iPSC(4F-MEF) ). After 2 weeks of coculture with PA6 stromal cells, neuronal differentiation of iPSC(1F-NSC) and iPSC(2F-NSC) was less efficient compared with iPSC(4F-NSC) and ESC, yielding lower proportions of colonies that stained positive for early and late neuronal markers. Electrophysiological analyses after 4 weeks of differentiation identified functional maturity in neurons differentiated from ESC, iPSC(2F-NSC) , iPSC(4F-NSC) , and iPSC(4F-MEF) but not in those from iPSC(1F-NSC) . Similar results were obtained after hematoendothelial differentiation on OP9 bone marrow stromal cells, where factor-reduced iPSC generated lower proportions of colonies with hematoendothelial progenitors than colonies of ESC, iPSC(4F-NSC) , and iPSC(4F-MEF) . We conclude that a reduction of reprogramming factors does not only reduce reprogramming efficiency but may also worsen subsequent differentiation and hinder future application of iPSC in cell replacement therapies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Animales , Antígenos de Diferenciación/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Factor 4 Similar a Kruppel , Potenciales de la Membrana , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Células del Estroma/metabolismo , Células del Estroma/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
Rejuvenation Res ; 14(4): 371-81, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21548757

RESUMEN

Recently, a peak at 1.28 ppm in proton magnetic resonance spectroscopy ((1)H-MRS) of neural stem cells (NSCs) was introduced as a noninterventional biomarker for neurogenesis in vivo. This would be an urgently needed requisite for translational studies in humans regarding the beneficial role of adult neurogenesis for the structural and functional integrity of the brain. However, many concerns have risen about the validity of the proposed signal as a specific marker for NSCs. The peak has also been related to cell-type-independent phenomena such as apoptosis or necrosis. Thus, we compared the 1.28-ppm peak in various immature stem cell populations, including embryonic stem cells, mouse embryonic fibroblasts, embryonic stem cell- and induced pluripotent stem cell-derived NSCs, ex vivo isolated embryonic NSCs, as well as mature and tumor cell types from different germ layers. To correlate the integral peak intensity with cell death, we induced both apoptosis with camptothecin and necrosis with sodium azide. A peak at 1.28 ppm was found in most cell types, and in most, but not all, NSCH cultures, demonstrating no specificity for NSCs. The intensities of the 1.28-ppm resonance significantly correlated with the rate of apoptosis, but not with the rate of necrosis, cell cycle phase distribution, cell size, or type. Multiple regression analysis displayed a significant predictive value of the peak intensity for apoptosis only. In this context, its specificity for apoptosis as a major selection process during neurogenesis may suggest this resonance as an indirect marker for neurogenesis in vivo.


Asunto(s)
Biomarcadores/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Células-Madre Neurales/citología , Protones , Animales , Apoptosis , Agregación Celular , Ciclo Celular , Supervivencia Celular , Corteza Cerebral/citología , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Necrosis , Células-Madre Neurales/metabolismo
19.
J Neurotrauma ; 28(3): 401-14, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21083415

RESUMEN

Experimental human fetal neural progenitor cell (hfNPC) transplantation has proven to be a promising therapeutic approach after traumatic brain injury (TBI). However, the long-term efficacy and safety, which are both highly important for clinical translation of this approach, have thus far not been investigated. This study investigated the effect of local (L, 1 × 10(5) cells) and systemic (S, 5 × 10(5) cells) administration of PKH-26-labeled pre-differentiated hfNPCs over a period of 12 weeks, beginning 24 h after severe controlled cortical impact TBI in Sprague-Dawley rats. Accelerating rotarod testing revealed a trend toward functional improvement beginning 1 week after transplantation, and persisting until the end of the experiment. The traumatic lesion volume as quantified by magnetic resonance imaging was smaller in both treatment groups compared to control (C) animals (C = 54.50 mm(3), L = 32 mm(3), S = 37.50 mm(3)). Correspondingly, neuronal (NeuN) staining showed increased neuronal survival at the border of the lesion in both transplanted groups (S = 92.4%; L = 87.2%; 72.5%). Histological analysis of the brain compartments revealed transiently increased angiogenesis and reduced astroglial reaction during the first 4 weeks post-transplantation. PKH-26-positive cells were detected exclusively after local transplantation without any evidence of tumor formation. However, graft differentiation was seen only in very rare cases. In conclusion, transplantation of hfNPCs improved the long-term functional outcome after TBI, diminished trauma lesion size, and increased neuronal survival in the border zone of the lesion. This therapeutic effect was not likely due to cell replacement, but was associated with transiently increased angiogenesis and reduced astrogliosis.


Asunto(s)
Lesiones Encefálicas/terapia , Corteza Cerebral/lesiones , Células-Madre Neurales/trasplante , Neuronas/patología , Animales , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Actividad Motora/fisiología , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Trasplante de Células Madre
20.
Transl Res ; 156(3): 155-60, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20801412

RESUMEN

"Regenerative medicine" hopefully will provide novel therapies for diseases that remain without effective therapy. This development is also true for most neurodegenerative disorders including Alzheimer's disease, Huntington's disease, or Parkinson's disease. Transplantation of new neurons to the brain has been performed in Parkinson's disease and in Huntington's disease. The restoration of dopaminergic neurons in patients with Parkinson's disease via implantation of embryonic midbrain tissue was taken from animal experiments to clinical applications, showing a limited efficacy. Clinical trials in patients with Huntington's disease using fetal striatal tissue currently are underway. Today, it seems possible to generate functional dopaminergic or striatal neurons form a variety of stem cells including embryonic or neural stem cells as well as induced pluripotent stem cells. First clinical trials using neural stem cell or embryonic-stem-cell-derived tissue are approved or already underway. Such cells allow for extensive in vitro and in vivo testing as well as "good manufacturing production," reducing the risks in clinical application.


Asunto(s)
Células Madre Embrionarias/trasplante , Enfermedades del Sistema Nervioso/cirugía , Células Madre Pluripotentes/trasplante , Trasplante de Células Madre/métodos , Adulto , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Encéfalo/citología , Encéfalo/embriología , Encéfalo/fisiología , Diferenciación Celular/fisiología , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Neuronas/citología , Neuronas/fisiología , Medición de Riesgo , Trasplante de Células Madre/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...