Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(13): 3350-3355, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531036

RESUMEN

Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.


Asunto(s)
Deinococcus/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Cristalografía por Rayos X , Cinética , Ligandos , Fosforilación , Conformación Proteica , Especificidad por Sustrato
2.
Biol Chem ; 394(6): 715-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23380538

RESUMEN

The formate/nitrite transporter (FNT) family of integral membrane proteins comprises pentameric channels for monovalent anions that exhibit a broad specificity for small anions such as chloride, the physiological cargo molecules formate, nitrite, and hydrosulfide, and also larger organic acids. Three-dimensional structures are available for the three known subtypes, FocA, NirC, and HSC, which reveal remarkable evolutionary optimizations for the respective physiological context of the channels. FNT channels share a conserved translocation pathway in each protomer, with a central hydrophobic cavity that is separated from both sides of the membrane by a narrow constriction. A single protonable residue, a histidine, plays a key role by transiently protonating the transported anion to allow an uncharged species to pass the hydrophobic barrier. Further selectivity is reached through variations in the electrostatic surface potential of the proteins, priming the formate channel FocA for anion export, whereas NirC and HSC should work bidirectionally. Electrophysiological studies have shown that a broad variety of monovalent anions can be transported, and in the case of FocA, these match exactly the products of mixed-acid fermentation, the predominant metabolic pathway for most enterobacterial species.


Asunto(s)
Aniones/metabolismo , Formiatos/metabolismo , Canales Iónicos/metabolismo , Nitritos/metabolismo , Animales , Humanos , Canales Iónicos/química , Transporte Iónico , Modelos Moleculares
3.
Proc Natl Acad Sci U S A ; 109(45): 18395-400, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23090993

RESUMEN

Nitrite (NO(2)(-)) is a central intermediate in the nitrogen metabolism of microorganisms and plants, and is used as a cytotoxin by macrophages as part of the innate immune response. The bacterial membrane protein NirC acts as a specific channel to facilitate the transport of nitrite anions across lipid bilayers for cytoplasmic detoxification. Despite NirC's importance in nitrogen metabolism and in the pathogenicity of enteric bacteria, available biochemical data are scarce. Here we present a functional and structural characterization of NirC from Salmonella typhimurium by lipid bilayer electrophysiology and X-ray crystallography. NirC is a pentameric member of the formate/nitrite transporter family of membrane proteins that operates as a channel with high conductance. Single-channel measurements reveal fast and slow gating events but, in contrast to the related FocA formate channel, no pH-dependent gating. A 2.4Å crystal structure of NirC at pH 5 shows similarity to FocA and aquaporins, but lacks the structural asymmetry observed in the formate channel at similarly low pH. Resolved water molecules in the protomers suggest a transport mechanism that also permits a facultative NO(2)(-)/H(+) symport.


Asunto(s)
Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Nitritos/metabolismo , Salmonella typhimurium/metabolismo , Aminoácidos/metabolismo , Aniones , Transporte Biológico , Cristalografía por Rayos X , Conductividad Eléctrica , Formiatos/metabolismo , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Canales Iónicos/química , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 109(33): 13254-9, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847446

RESUMEN

Formate is a major metabolite in the anaerobic fermentation of glucose by many enterobacteria. It is translocated across cellular membranes by the pentameric ion channel/transporter FocA that, together with the nitrite channel NirC, forms the formate/nitrite transporter (FNT) family of membrane transport proteins. Here we have carried out an electrophysiological analysis of FocA from Salmonella typhimurium to characterize the channel properties and assess its specificity toward formate and other possible permeating ions. Single-channel currents for formate, hypophosphite and nitrite revealed two mechanistically distinct modes of gating that reflect different types of structural rearrangements in the transport channel of each FocA protomer. Moreover, FocA did not conduct cations or divalent anions, but the chloride anion was identified as further transported species, along with acetate, lactate and pyruvate. Formate, acetate and lactate are major end products of anaerobic mixed-acid fermentation, the pathway where FocA is predominantly required, so that this channel is ideally adapted to act as a multifunctional export protein to prevent their intracellular accumulation. Because of the high degree of conservation in the residues forming the transport channel among FNT family members, the flexibility in conducting multiple molecules is most likely a general feature of these proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fermentación/fisiología , Formiatos/metabolismo , Canales Iónicos/metabolismo , Salmonella typhimurium/metabolismo , Aniones , Proteínas Bacterianas/química , Transporte Biológico , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Membrana Dobles de Lípidos/metabolismo , Potenciales de la Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...