Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 16(12): 2942-2957, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34822771

RESUMEN

Understanding cell recruitment in damaged tendons is critical for improvements in regenerative therapy. We recently reported that targeted disruption of transforming growth factor beta (TGFß) type II receptor in the tendon cell lineage (Tgfbr2ScxCre) resulted in resident tenocyte dedifferentiation and tendon deterioration in postnatal stages. Here we extend the analysis and identify direct recruitment of stem/progenitor cells into the degenerative mutant tendons. Cre-mediated lineage tracing indicates that these cells are not derived from tendon-ensheathing tissues or from a Scleraxis-expressing lineage, and they turned on tendon markers only upon entering the mutant tendons. Through immunohistochemistry and inducible gene deletion, we further find that the recruited cells originated from a Sox9-expressing lineage and their recruitment was dependent on cell autonomous TGFß signaling. The cells identified in this study thus differ from previous reports of cell recruitment into injured tendons and suggest a critical role for TGFß signaling in cell recruitment, providing insights that may support improvements in tendon repair.


Asunto(s)
Transducción de Señal , Células Madre/metabolismo , Tendones/patología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Células Clonales , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Tendones/ultraestructura , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161280

RESUMEN

Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.


Asunto(s)
Condrocitos/patología , Articulaciones/fisiopatología , Actividad Motora , Osteogénesis Imperfecta/fisiopatología , Osteogénesis , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Animales Recién Nacidos , Condrogénesis/genética , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Marcha , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hidroxilación , Inflamación/genética , Inflamación/patología , Articulaciones/patología , Ligamentos/patología , Lisina/metabolismo , Ratones , Modelos Biológicos , Osificación Heterotópica/complicaciones , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Osificación Heterotópica/fisiopatología , Osteogénesis/genética , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Péptidos/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Tendones/patología
3.
Nat Commun ; 12(1): 3851, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158501

RESUMEN

Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Somitos/metabolismo , Animales , Linaje de la Célula/genética , Células Cultivadas , Embrión de Pollo , Extremidades/embriología , Fibroblastos/citología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somitos/citología , Somitos/embriología
4.
Stem Cells Dev ; 30(11): 601-609, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33757300

RESUMEN

An efficient musculoskeletal system depends on the precise assembly and coordinated growth and function of muscles, skeleton, and tendons. However, the mechanisms that drive integrated musculoskeletal development and coordinated growth and differentiation of each of these tissues are still being uncovered. Epigenetic modifiers have emerged as critical regulators of cell fate differentiation, but so far almost nothing is known about their roles in tendon biology. Previous studies have shown that epigenetic modifications driven by Enhancer of zeste homolog 2 (EZH2), a major histone methyltransferase, have significant roles in vertebrate development including skeletal patterning and bone formation. We now find that targeting Ezh2 through the limb mesenchyme also has significant effects on tendon and muscle patterning, likely reflecting the essential roles of early mesenchymal cues mediated by Ezh2 for coordinated patterning and development of all tissues of the musculoskeletal system. Conversely, loss of Ezh2 in the tendon cells did not disrupt overall tendon structure or collagen organization suggesting that tendon differentiation and maturation are independent of Ezh2 signaling.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Osteogénesis , Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Mesodermo , Osteogénesis/genética , Tendones
5.
Dev Biol ; 470: 108-120, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248111

RESUMEN

Growth of the musculoskeletal system requires precise coordination between bone, muscle, and tendon during development. Insufficient elongation of the muscle-tendon unit relative to bone growth results in joint contracture, a condition characterized by reduction or complete loss of joint range of motion. Here we establish a novel murine model of joint contracture by targeting Smad4 for deletion in the tendon cell lineage using Scleraxis-Cre (ScxCre). Smad4ScxCre mutants develop a joint contracture shortly after birth. The contracture is stochastic in direction and increases in severity with age. Smad4ScxCre mutant tendons exhibited a stable reduction in cellularity and a progressive reduction in extracellular matrix volume. Collagen fibril diameters were reduced in the Smad4ScxCre mutants, suggesting a role for Smad4 signaling in the regulation of matrix accumulation. Although ScxCre also has sporadic activity in both cartilage and muscle, we demonstrate an essential role for Smad4 loss in tendons for the development of joint contractures. Disrupting the canonical TGFß-pathway in Smad2;3ScxCre mutants did not result in joint contractures. Conversely, disrupting the BMP pathway by targeting BMP receptors (Alk3ScxCre/Alk6null) recapitulated many features of the Smad4ScxCre contracture phenotype, suggesting that joint contracture in Smad4ScxCre mutants is caused by disruption of BMP signaling. Overall, these results establish a model of murine postnatal joint contracture and a role for BMP signaling in tendon elongation and extracellular matrix accumulation.


Asunto(s)
Contractura/metabolismo , Contractura/patología , Proteína Smad4/metabolismo , Tendones/crecimiento & desarrollo , Animales , Desarrollo Óseo , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Linaje de la Célula , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Miembro Anterior , Ratones , Músculo Esquelético/metabolismo , Transducción de Señal , Proteína Smad4/genética , Tendones/citología , Tendones/embriología , Tendones/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
PLoS Biol ; 18(11): e3000902, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33201874

RESUMEN

Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.


Asunto(s)
Músculos Oculomotores/embriología , Músculos Oculomotores/crecimiento & desarrollo , Tretinoina/metabolismo , Animales , Tejido Conectivo/fisiología , Desarrollo Embrionario , Ojo , Imagenología Tridimensional/métodos , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Morfogénesis , Transducción de Señal , Tendones/fisiología , Tretinoina/fisiología
7.
Elife ; 92020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31961320

RESUMEN

Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study, we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFß signaling in maintenance of the tendon cell fate. To examine the role of TGFß signaling in tenocyte function the TGFß type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFß signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFß signaling in these processes.


Asunto(s)
Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Tendones/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Desdiferenciación Celular , Linaje de la Célula , Regulación de la Expresión Génica , Ratones , Mutación , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Tendones/metabolismo , Tenocitos/citología , Tenocitos/metabolismo
8.
Cell Stem Cell ; 25(6): 797-813.e9, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31809738

RESUMEN

Many adult tissues contain resident stem cells, such as the Pax7+ satellite cells within skeletal muscle, that regenerate parenchymal elements following damage. Tissue-resident mesenchymal progenitors (MPs) also participate in regeneration, although their function and fate in this process are unclear. Here, we identify Hypermethylated in cancer 1 (Hic1) as a marker of MPs in skeletal muscle and further show that Hic1 deletion leads to MP hyperplasia. Single-cell RNA-seq and ATAC-seq analysis of Hic1+ MPs in skeletal muscle shows multiple subpopulations, which we further show have distinct functions and lineage potential. Hic1+ MPs orchestrate multiple aspects of skeletal muscle regeneration by providing stage-specific immunomodulation and trophic and mechanical support. During muscle regeneration, Hic1+ derivatives directly contribute to several mesenchymal compartments including Col22a1-expressing cells within the myotendinous junction. Collectively, these findings demonstrate that HIC1 regulates MP quiescence and identifies MP subpopulations with transient and enduring roles in muscle regeneration.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Regeneración/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
9.
Development ; 146(20)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31540914

RESUMEN

The transcription factor scleraxis (Scx) is required for tendon development; however, the function of Scx is not fully understood. Although Scx is expressed by all tendon progenitors and cells, only long tendons are disrupted in the Scx-/- mutant; short tendons appear normal and the ability of muscle to attach to skeleton is not affected. We recently demonstrated that long tendons are formed in two stages: first, by muscle anchoring to skeleton via a short tendon anlage; and second, by rapid elongation of the tendon in parallel with skeletal growth. Through lineage tracing, we extend these observations to all long tendons and show that tendon elongation is fueled by recruitment of new mesenchymal progenitors. Conditional loss of Scx in mesenchymal progenitors did not affect the first stage of anchoring; however, new cells were not recruited during elongation and long tendon formation was impaired. Interestingly, for tenocyte recruitment, Scx expression was required only in the recruited cells and not in the recruiting tendon. The phenotype of Scx mutants can thus be understood as a failure of tendon cell recruitment during tendon elongation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tendones/citología , Tendones/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Ratones , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Células Madre/citología , Células Madre/metabolismo
10.
Development ; 146(15)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31320326

RESUMEN

Tendon and bone are attached by a transitional connective tissue that is morphologically graded from tendinous to osseous and develops from bipotent progenitors that co-express scleraxis (Scx) and Sox9 (Scx+/Sox9+). Scx+/Sox9+ progenitors have the potential to differentiate into either tenocytes or chondrocytes, yet the developmental mechanism that spatially resolves their bipotency at the tendon-bone interface during embryogenesis remains unknown. Here, we demonstrate that development of Scx+/Sox9+ progenitors within the mammalian lower jaw requires FGF signaling. We find that loss of Fgfr2 in the mouse tendon-bone interface reduces Scx expression in Scx+/Sox9+ progenitors and induces their biased differentiation into Sox9+ chondrocytes. This expansion of Sox9+ chondrocytes, which is concomitant with decreased Notch2-Dll1 signaling, prevents formation of a mixed population of chondrocytes and tenocytes, and instead results in ectopic endochondral bone at tendon-bone attachment units. Our work shows that FGF signaling directs zonal patterning at the boundary between tendon and bone by regulating cell fate decisions through a mechanism that employs Notch signaling.


Asunto(s)
Huesos/metabolismo , Condrocitos/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Tendones/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Huesos/citología , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Maxilares/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , Tendones/citología , Tenocitos/citología
11.
Matrix Biol ; 82: 38-53, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30738849

RESUMEN

Geleophysic dysplasia is a rare, frequently lethal condition characterized by severe short stature with progressive joint contractures, cardiac, pulmonary, and skin anomalies. Geleophysic dysplasia results from dominant fibrillin-1 (FBN1) or recessive ADAMTSL2 mutations, suggesting a functional link between ADAMTSL2 and fibrillin microfibrils. Mice lacking ADAMTSL2 die at birth, which has precluded analysis of postnatal limb development and mechanisms underlying the skeletal anomalies of geleophysic dysplasia. Here, detailed expression analysis of Adamtsl2 using an intragenic lacZ reporter shows strong Adamtsl2 expression in limb tendons. Expression in developing and growing bones is present in regions that are destined to become articular cartilage but is absent in growth plate cartilage. Consistent with strong tendon expression, Adamtsl2 conditional deletion in limb mesenchyme using Prx1-Cre led to tendon anomalies, albeit with normal collagen fibrils, and distal limb shortening, providing a mouse model for geleophysic dysplasia. Unexpectedly, conditional Adamtsl2 deletion using Scx-Cre, a tendon-specific Cre-deleter strain, which does not delete in cartilage, also impaired skeletal growth. Recombinant ADAMTSL2 is shown here to colocalize with fibrillin microfibrils in vitro, and enhanced staining of fibrillin-1 microfibrils was observed in Prx1-Cre Adamtsl2 tendons. The findings show that ADAMTSL2 specifically regulates microfibril assembly in tendons and that proper microfibril composition in tendons is necessary for tendon growth. We speculate that reduced bone growth in geleophysic dysplasia may result from external tethering by short tendons rather than intrinsic growth plate anomalies. Taken together with previous work, we suggest that GD results from abnormal microfibril assembly in tissues, and that ADAMTSL2 may limit the assembly of fibrillin microfibrils.


Asunto(s)
Proteínas ADAMTS/genética , Enfermedades del Desarrollo Óseo/genética , Extremidades/crecimiento & desarrollo , Eliminación de Gen , Deformidades Congénitas de las Extremidades/genética , Tendones/crecimiento & desarrollo , Proteínas ADAMTS/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Fibrilina-1/metabolismo , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Especificidad de Órganos , Tendones/metabolismo
12.
Development ; 145(24)2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30504126

RESUMEN

Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9+ cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.


Asunto(s)
Huesos/fisiología , Movimiento , Células Madre/citología , Tendones/fisiología , Animales , Animales Recién Nacidos , Compartimento Celular , Muerte Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Desarrollo Embrionario , Femenino , Proteínas Hedgehog/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Osteoclastos/citología , Osteoclastos/metabolismo , Fagocitos/citología , Fagocitos/metabolismo , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
13.
J Biol Chem ; 293(16): 5766-5780, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507095

RESUMEN

Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP-tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)-positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor ß (TGF-ß) signaling. scx-deficient mice had migration of Sca-1-positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx-null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro, and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx-null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body.


Asunto(s)
Tendón Calcáneo/citología , Tendón Calcáneo/fisiopatología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre/citología , Traumatismos de los Tendones/fisiopatología , Cicatrización de Heridas , Tendón Calcáneo/metabolismo , Tendón Calcáneo/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Movimiento Celular , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Eliminación de Gen , Ratones , Ratones Transgénicos , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Traumatismos de los Tendones/genética , Traumatismos de los Tendones/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Transgenes
14.
Stem Cells ; 36(4): 527-539, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29315990

RESUMEN

Tendon repair is a clinical challenge because of the limited understanding on tenogenesis. The synthesis of type I collagen (Collagen I) and other extracellular matrix are essential for tendon differentiation and homeostasis. Current studies on tenogenesis focused mostly on the tenogenic transcriptional factors while the signaling controlling tenogenesis on translational level remains largely unknown. Here, we showed that mechanistic target of rapamycin (mTOR) signaling was activated by protenogenic growth factor, transforming growth factors beta1, and insulin-like growth factor-I. The expression of mTOR was upregulated during tenogenesis of mesenchymal stem cells (MSCs). Moreover, mTOR was downregulated in human tendinopathy tissues and was inactivated upon statin treatment. Both inhibition and depletion of AKT or mTOR significantly reduced type I collagen production and impaired tenogenesis of MSCs. Tendon specific-ablation of mTOR resulted in tendon defect and reduction of Collagen I. However, there is no evident downregulation of tendon associated collagens at the transcription level. Our study demonstrated that AKT-mTOR axis is a key mediator of tendon differentiation and provided a novel therapeutic target for tendinopathy and tendon injuries. Stem Cells 2018;36:527-539.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tendones/metabolismo , Animales , Células Madre Mesenquimatosas/citología , Ratones , Tendones/citología , Factor de Crecimiento Transformador beta1/metabolismo
15.
Sci Rep ; 7(1): 17175, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215029

RESUMEN

Tendons transmit contractile forces between musculoskeletal tissues. Whereas the biomechanical properties of tendons have been studied extensively, the molecular mechanisms regulating postnatal tendon development are not well understood. Here we examine the role of mTORC1 signaling in postnatal tendon development using mouse genetic approaches. Loss of mTORC1 signaling by removal of Raptor in tendons caused severe tendon defects postnatally, including decreased tendon thickness, indicating that mTORC1 is necessary for postnatal tendon development. By contrast, activation of mTORC1 signaling in tendons increased tendon cell numbers and proliferation. In addition, Tsc1 conditional knockout mice presented severely disorganized collagen fibers and neovascularization in the tendon midsubstance. Interestingly, collagen fibril diameter was significantly reduced in both Raptor and Tsc1 conditional knockout mice, albeit with variations in severity. We performed RNA-seq analysis using Achilles tendons to investigate the molecular changes underlying these tendon phenotypes. Raptor conditional knockout mice showed decreased extracellular matrix (ECM) structure-related gene expression, whereas Tsc1 conditional knockout mice exhibited changes in genes regulating TGF-ß/BMP/FGF signaling, as well as in genes controlling ECM structure and disassembly. Collectively, our studies suggest that maintaining physiological levels of mTORC1 signaling is essential for postnatal tendon development and maturation.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Reguladora Asociada a mTOR/fisiología , Tendones/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/fisiología , Animales , Animales Recién Nacidos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Noqueados , Transducción de Señal , Tendones/metabolismo
16.
BMC Biol ; 14: 21, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26988708

RESUMEN

BACKGROUND: Resident fibroblasts synthesize the cardiac extracellular matrix, and can undergo phenotype conversion to myofibroblasts to augment matrix production, impairing function and contributing to organ failure. A significant gap in our understanding of the transcriptional regulation of these processes exists. Given the key role of this phenotype conversion in fibrotic disease, the identification of such novel transcriptional regulators may yield new targets for therapies for fibrosis. RESULTS: Using explanted primary cardiac fibroblasts in gain- and loss-of-function studies, we found that scleraxis critically controls cardiac fibroblast/myofibroblast phenotype by direct transcriptional regulation of myriad genes that effectively define these cells, including extracellular matrix components and α-smooth muscle actin. Scleraxis furthermore potentiated the TGFß/Smad3 signaling pathway, a key regulator of myofibroblast conversion, by facilitating transcription complex formation. While scleraxis promoted fibroblast to myofibroblast conversion, loss of scleraxis attenuated myofibroblast function and gene expression. These results were confirmed in scleraxis knockout mice, which were cardiac matrix-deficient and lost ~50% of their complement of cardiac fibroblasts, with evidence of impaired epithelial-to-mesenchymal transition (EMT). Scleraxis directly transactivated several EMT marker genes, and was sufficient to induce mesenchymal/fibroblast phenotype conversion of A549 epithelial cells. Conversely, loss of scleraxis attenuated TGFß-induced EMT marker expression. CONCLUSIONS: Our results demonstrate that scleraxis is a novel and potent regulator of cellular progression along the continuum culminating in the cardiac myofibroblast phenotype. Scleraxis was both sufficient to drive conversion, and required for full conversion to occur. Scleraxis fulfills this role by direct transcriptional regulation of key target genes, and by facilitating TGFß/Smad signaling. Given the key role of fibroblast to myofibroblast conversion in fibrotic diseases in the heart and other tissue types, scleraxis may be an important target for therapeutic development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos/citología , Miocardio/citología , Miofibroblastos/citología , Actinas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Células Cultivadas , Fibroblastos/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miofibroblastos/metabolismo , Células 3T3 NIH , Fenotipo , Ratas Sprague-Dawley , Transducción de Señal , Proteína smad3/metabolismo , Activación Transcripcional
17.
Development ; 142(14): 2431-41, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062940

RESUMEN

The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/embriología , Tendones/embriología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cartílago/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Articulación Metacarpofalángica/patología , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Músculo Esquelético/metabolismo , Fenotipo , Factor de Transcripción SOX9/genética , Tendones/metabolismo
18.
Development ; 142(10): 1831-9, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25926361

RESUMEN

The current view of skeletal patterning fails to explain the formation of sesamoid bones. These small bones, which facilitate musculoskeletal function, are exceptionally embedded within tendons. Although their structural design has long puzzled researchers, only a limited model for sesamoid bone development has emerged. To date, sesamoids are thought to develop inside tendons in response to mechanical signals from the attaching muscles. However, this widely accepted model has lacked substantiation. Here, we show that, contrary to the current view, in the mouse embryo the patella initially develops as a bony process at the anteriodistal surface of the femur. Later, the patella is separated from the femur by a joint formation process that is regulated by mechanical load. Concurrently, the patella becomes superficially embedded within the quadriceps tendon. At the cellular level, we show that, similar to bone eminences, the patella is formed secondarily by a distinct pool of Sox9- and Scx-positive progenitor cells. Finally, we show that TGFß signaling is necessary for the specification of patella progenitors, whereas the BMP4 pathway is required for their differentiation. These findings establish an alternative model for patella development and provide the mechanical and molecular mechanisms that underlie this process. More broadly, our finding that activation of a joint formation program can be used to switch between the formation of bony processes and of new auxiliary bones provides a new perspective on plasticity during skeletal patterning and evolution.


Asunto(s)
Articulaciones/embriología , Articulaciones/metabolismo , Rótula/embriología , Rótula/metabolismo , Huesos Sesamoideos/embriología , Huesos Sesamoideos/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/fisiología , Hibridación in Situ , Articulaciones/citología , Ratones , Ratones Mutantes , Ratones Transgénicos , Morfogénesis/genética , Morfogénesis/fisiología , Rótula/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Huesos Sesamoideos/citología , Células Madre/citología , Células Madre/metabolismo
19.
J Orthop Res ; 33(6): 800-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25664867

RESUMEN

Although there have been several advances identifying novel mediators of tendon induction, differentiation, and patterning, much of the basic landscape of tendon biology from developmental stages onward remain almost completely undefined. During the New Frontiers in Tendon Research meeting, a group of developmental biologists with expertise across musculoskeletal disciplines identified key challenges for the tendon development field. The tools generated and the molecular regulators identified in developmental research have enhanced mechanistic studies in tendon injury and repair, both by defining benchmarks for success, as well as informing regenerative strategies. To address the needs of the orthopedic research community, this review will therefore focus on three key areas in tendon development that may have critical implications for the fields of tendon repair/regeneration and tendon tissue engineering, including functional markers of tendon cell identity, signaling regulators of tendon induction and differentiation, and in vitro culture models for tendon cell differentiation. Our goal is to provide a useful list of the currently known molecular players and their function in tendon differentiation within the context of development.


Asunto(s)
Diferenciación Celular , Tendones/crecimiento & desarrollo , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Tendones/citología , Tendones/metabolismo
20.
Development ; 141(19): 3683-96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25249460

RESUMEN

The molecular signals driving tendon development are not fully identified. We have undertaken a transcriptome analysis of mouse limb tendon cells that were isolated at different stages of development based on scleraxis (Scx) expression. Microarray comparisons allowed us to establish a list of genes regulated in tendon cells during mouse limb development. Bioinformatics analysis of the tendon transcriptome showed that the two most strongly modified signalling pathways were TGF-ß and MAPK. TGF-ß/SMAD2/3 gain- and loss-of-function experiments in mouse limb explants and mesenchymal stem cells showed that TGF-ß signalling was sufficient and required via SMAD2/3 to drive mouse mesodermal stem cells towards the tendon lineage ex vivo and in vitro. TGF-ß was also sufficient for tendon gene expression in late limb explants during tendon differentiation. FGF does not have a tenogenic effect and the inhibition of the ERK MAPK signalling pathway was sufficient to activate Scx in mouse limb mesodermal progenitors and mesenchymal stem cells.


Asunto(s)
Extremidades/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Tendones/citología , Transcriptoma/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Células Madre Mesenquimatosas/metabolismo , Ratones , Análisis por Micromatrices , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tendones/metabolismo , Transcriptoma/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA