Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1275361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077374

RESUMEN

Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms.


Asunto(s)
Matriz Extracelular , Tenascina , Humanos , Tenascina/metabolismo , Matriz Extracelular/metabolismo , Isoformas de Proteínas , Biomarcadores , Autoanticuerpos
2.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176074

RESUMEN

Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively. Here, we study the interplay between the matrix molecule tenascin-C (TNC) and chemokine CCL2, both elevated in and associated with the progression of breast cancer and playing key roles in myeloid immune responses. We uncover a correlation between TNC/CCL2 tissue levels in HER2+ breast cancer and examine the physical and functional interactions of these molecules in a murine disease model with tunable TNC levels and in in vitro cellular and cell-free models. TNC supported sustained CCL2 synthesis, with chemokine binding to TNC via two distinct domains. TNC dominated the behavior of tumor-resident myeloid cells; CCL2 did not impact macrophage survival/activation whilst TNC facilitated an immune suppressive macrophage phenotype that was not dependent on or altered by CCL2 co-expression. Together, these data map new binding partners within the TME and demonstrate that whilst the matrix exerts transcriptional control over the chemokine, each plays a distinct role in subverting anti-tumoral immunity.


Asunto(s)
Neoplasias , Tenascina , Animales , Ratones , Quimiocinas/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Tenascina/metabolismo , Quimiocina CCL2/metabolismo
3.
Front Bioeng Biotechnol ; 10: 871933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600892

RESUMEN

Recombinant protein expression in eukaryotic insect cells is a powerful approach for producing challenging targets. However, due to incompatibility with standard baculoviral platforms and existing low-throughput methodology, the use of the Drosophila melanogaster "S2" cell line lags behind more common insect cell lines such as Sf9 or High-Five™. Due to the advantages of S2 cells, particularly for secreted and secretable proteins, the lack of a simple and parallelizable S2-based platform represents a bottleneck, particularly for biochemical and biophysical laboratories. Therefore, we developed FAS2FURIOUS, a simple and rapid S2 expression pipeline built upon an existing low-throughput commercial platform. FAS2FURIOUS is comparable in effort to simple E. coli systems and allows users to clone and test up to 46 constructs in just 2 weeks. Given the ability of S2 cells to express challenging targets, including receptor ectodomains, secreted glycoproteins, and viral antigens, FAS2FURIOUS represents an attractive orthogonal approach for protein expression in eukaryotic cells.

4.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507879

RESUMEN

Tenascin-C (TNC), an extracellular matrix protein that has proinflammatory properties, is a recently described antibody target in rheumatoid arthritis (RA). In this study, we utilized a systematic discovery process and identified 5 potentially novel citrullinated TNC (cit-TNC) T cell epitopes. CD4+ T cells specific for these epitopes were elevated in the peripheral blood of subjects with RA and showed signs of activation. Cit-TNC-specific T cells were also present among synovial fluid T cells and secreted IFN-γ. Two of these cit-TNC T cell epitopes were also recognized by antibodies within the serum and synovial fluid of individuals with RA. Detectable serum levels of cit-TNC-reactive antibodies were prevalent among subjects with RA and positively associated with cyclic citrullinated peptide (CCP) reactivity and the HLA shared epitope. Furthermore, cit-TNC-reactive antibodies were correlated with rheumatoid factor and elevated in subjects with a history of smoking. This work confirms cit-TNC as an autoantigen that is targeted by autoreactive CD4+ T cells and autoantibodies in patients with RA. Furthermore, our findings raise the possibility that coinciding epitopes recognized by both CD4+ T cells and B cells have the potential to amplify autoimmunity and promote the development and progression of RA.


Asunto(s)
Artritis Reumatoide/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Tenascina/inmunología , Linfocitos B/citología , Linfocitos T CD4-Positivos/citología , Humanos
5.
Matrix Biol ; 93: 95-114, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32599145

RESUMEN

The identification of barely more than 20,000 human genes was amongst the most surprising outcomes of the human genome project. Alternative splicing provides an essential means of expanding the proteome, enabling a single gene to encode multiple, distinct isoforms by selective inclusion or exclusion of exons from mature mRNA. However, mis-regulation of this process is associated with most human diseases. Here, we examine the impact of post-transcriptional processing on extracellular matrix function, focusing on the complex alternative splicing patterns of tenascin-C, a molecule that can exist in as many as 500 different isoforms. We demonstrate that the pro-inflammatory activity of this endogenous innate immune trigger is controlled by inclusion or exclusion of a novel immunomodulatory site located within domains AD2AD1, identifying this as a mechanism that prevents unnecessary inflammation in healthy tissues but enables rapid immune cell mobilization and activation upon tissue damage, and defining how this goes awry in autoimmune disease.


Asunto(s)
Empalme Alternativo , Matriz Extracelular/metabolismo , Inmunidad Innata , Tenascina/química , Tenascina/genética , Línea Celular , Linaje de la Célula , Humanos , Especificidad de Órganos , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Tenascina/metabolismo
8.
Front Immunol ; 10: 1987, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497021

RESUMEN

Viral infections are a common cause of asthma exacerbations, with human rhinoviruses (RV) the most common trigger. RV signals through a number of different receptors, including toll-like receptor (TLR)3. Tenascin-C (TN-C) is an immunomodulatory extracellular matrix protein present in high quantities in the airway of people with asthma, and expression is also upregulated in nasal lavage fluid in response to RV infection. Respiratory viral infection has been demonstrated to induce the release of small extracellular vesicles (sEV) such as exosomes, whilst exosomal cargo can also be modified in the bronchoalveolar lavage fluid of people with asthma. These sEVs may potentiate airway inflammation and regulate the immune response to infection. This study characterizes the relationship between RV infection of bronchial epithelial cells and the release of TN-C, and the release of sEVs following stimulation with the TLR3 agonist and synthetic viral mimic, poly(I:C), as well as the function of the released protein/vesicles. The BEAS-2B airway epithelial cell line and primary human bronchial epithelial cells (PBECs) from asthmatic and non-asthmatic donors were infected with RV or treated with poly(I:C). TN-C expression, release and localization to sEVs was quantified. TN-C expression was also assessed following intra-nasal challenge of C57BL/6 mice with poly(I:C). BEAS-2B cells and macrophages were subsequently challenged with TN-C, or with sEVs generated from BEAS-2B cells pre-treated with siRNA targeted to TN-C or control. The results revealed that poly(I:C) stimulation induced TN-C release in vivo, whilst both poly(I:C) stimulation and RV infection promoted release in vitro, with elevated TN-C release from PBECs obtained from people with asthma. Poly(I:C) also induced the release of TN-C-rich sEVs from BEAS-2B cells. TN-C, and sEVs from poly(I:C) challenged cells, induced cytokine synthesis in macrophages and BEAS-2B cells, whilst sEVs from control cells did not. Moreover, sEVs with ~75% reduced TN-C content did not alter the capacity of sEVs to induce inflammation. This study identifies two novel components of the inflammatory pathway that regulates the immune response following RV infection and TLR3 stimulation, highlighting TN-C release and pro-inflammatory sEVs in the airway as relevant to the biology of virally induced exacerbations of asthma.


Asunto(s)
Células Epiteliales/inmunología , Vesículas Extracelulares/inmunología , Infecciones por Picornaviridae/inmunología , Tenascina/inmunología , Receptor Toll-Like 3/inmunología , Animales , Asma/inmunología , Línea Celular , Citocinas/inmunología , Células Epiteliales/virología , Humanos , Ratones Endogámicos C57BL , Poli I-C/farmacología , Sistema Respiratorio/citología
9.
Matrix Biol ; 82: 86-104, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31004743

RESUMEN

The extracellular matrix (ECM) microenvironment is increasingly implicated in the instruction of pathologically relevant cell behaviors, from aberrant transdifferentation to invasion and beyond. Indeed, pathologic ECMs possess a panoply of alterations that provide deleterious instructions to resident cells. Here we demonstrate the precise manner in which the ECM protein fibronectin (FN) undergoes the posttranslational modification citrullination in response to peptidyl-arginine deiminase (PAD), an enzyme associated with innate immune cell activity and implicated in systemic ECM-centric diseases, like cancer, fibrosis and rheumatoid arthritis. FN can be citrullinated in at least 24 locations, 5 of which reside in FN's primary cell-binding domain. Citrullination of FN alters integrin clustering and focal adhesion stability with a concomitant enhancement in force-triggered integrin signaling along the FAK-Src and ILK-Parvin pathways within fibroblasts. In vitro migration and in vivo wound healing studies demonstrate the ability of citrullinated FN to support a more migratory/invasive phenotype that enables more rapid wound closure. These findings highlight the potential of ECM, particularly FN, to "record" inflammatory insults via post-translational modification by inflammation-associated enzymes that are subsequently "read" by resident tissue fibroblasts, establishing a direct link between inflammation and tissue homeostasis and pathogenesis through the matrix.


Asunto(s)
Fibronectinas/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Células del Estroma/citología , Animales , Sitios de Unión , Adhesión Celular , Movimiento Celular , Células Cultivadas , Citrulinación , Matriz Extracelular/metabolismo , Femenino , Fibronectinas/química , Humanos , Masculino , Ratones , Desiminasas de la Arginina Proteica/metabolismo , Transducción de Señal , Células del Estroma/metabolismo
11.
Ann Rheum Dis ; 78(2): 186-191, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30552174

RESUMEN

OBJECTIVES: Controlled immune responses rely on integrated crosstalk between cells and their microenvironment. We investigated whether targeting proinflammatory signals from the extracellular matrix that persist during pathological inflammation provides a viable strategy to treat rheumatoid arthritis (RA). METHODS: Monoclonal antibodies recognising the fibrinogen-like globe (FBG) of tenascin-C were generated by phage display. Clones that neutralised FBG activation of toll-like receptor 4 (TLR4), without impacting pathogenic TLR4 activation, were epitope mapped by crystallography. Antibodies stained synovial biopsies of patients at different stages of RA development. Antibody efficacy in preventing RA synovial cell cytokine release, and in modulating collagen-induced arthritis in rats, was assessed. RESULTS: Tenascin-C is expressed early in the development of RA, even before disease diagnosis, with higher levels in the joints of people with synovitis who eventually developed RA than in people whose synovitis spontaneously resolved. Anti-FBG antibodies inhibited cytokine release by RA synovial cells and prevented disease progression and tissue destruction during collagen-induced arthritis. CONCLUSIONS: Early changes in the synovial microenvironment contribute to RA progression; blocking proinflammatory signals from the matrix can ameliorate experimental arthritis. These data highlight a new drug class that could offer early, disease-specific immune modulation in RA, without engendering global immune suppression.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Artritis Reumatoide/inmunología , Microambiente Celular/inmunología , Inmunoterapia/métodos , Membrana Sinovial/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Artritis Experimental , Colágeno , Citocinas/metabolismo , Progresión de la Enfermedad , Fibrinógeno/inmunología , Humanos , Ratas , Tenascina/metabolismo , Receptor Toll-Like 4/inmunología
12.
Methods Cell Biol ; 143: 371-400, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29310788

RESUMEN

The extracellular matrix molecule tenascin-C (TNC) was discovered over 30 years ago, and its tightly regulated pattern of expression since sparked keen interest in the scientific community. In adult tissues, TNC expression is restricted to specific niches and areas of active remodeling or high mechanical strain. However, while most healthy tissues contain little TNC, its transient expression upon cellular stress or tissue injury helps to mediate repair and restore homeostasis. Persistent expression of TNC is associated with chronic inflammation, fibrosis, and cancer, where methods for its detection are emerging as a reliable means to predict disease onset, prognosis, and response to treatment. Because studying the expression of this large matrix molecule is not always straightforward, here we describe basic techniques to examine tissue levels of TNC mRNA and protein. We also describe methods for purifying recombinant TNC, knocking down its expression, and creating cell-derived matrices with or without TNC within.


Asunto(s)
Bioensayo/métodos , Matriz Extracelular/metabolismo , Imagen Molecular/métodos , Tenascina/análisis , Animales , Bioensayo/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Ratones , ARN Mensajero/análisis , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tenascina/genética , Tenascina/aislamiento & purificación , Tenascina/metabolismo
13.
Methods Cell Biol ; 143: 401-428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29310789

RESUMEN

The extracellular matrix molecule tenascin-C (TNC) has received a lot of attention since its discovery 30 years ago because of its multiple roles in tissue repair, and in pathologies such as chronic inflammation, fibrosis, and cancer. Mouse models with high or no TNC expression have enabled the validation of key roles for TNC in immunity and angiogenesis. In parallel, many approaches including primary cell or organ cultures have shed light on the cellular and molecular mechanisms by which TNC exerts its multiple actions in vivo. Here, we will describe assays that investigate its antiadhesive properties and that measure the effect of TNC on the actin cytoskeleton, cell survival, proliferation, and migration. We will also describe assays to assess the impact of TNC on endothelial and immune cells in cell and organ culture, and to compare the responses of fibroblasts from normal and diseased tissues.


Asunto(s)
Bioensayo/métodos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Imagen Molecular/métodos , Tenascina/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Bioensayo/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Pollos , Membrana Corioalantoides , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Modelos Animales , Neovascularización Fisiológica/fisiología , Tenascina/análisis
14.
Cancer Res ; 78(4): 950-961, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29259017

RESUMEN

Tenascin-C is an extracellular matrix molecule that drives progression of many types of human cancer, but the basis for its actions remains obscure. In this study, we describe a cell-autonomous signaling mechanism explaining how tenascin-C promotes cancer cell migration in the tumor microenvironment. In a murine xenograft model of advanced human osteosarcoma, tenascin-C and its receptor integrin α9ß1 were determined to be essential for lung metastasis of tumor cells. We determined that activation of this pathway also reduced tumor cell-autonomous expression of target genes for the transcription factor YAP. In clinical specimens, a genetic signature comprising four YAP target genes represents prognostic impact. Taken together, our results illuminate how tumor cell deposition of tenascin-C in the tumor microenvironment promotes invasive migration and metastatic progression.Significance: These results illuminate how the extracellular matrix glycoprotein tenascin-C in the tumor microenvironment promotes invasive migration and metastatic progression by employing integrin α9ß1, abolishing actin stress fiber formation, inhibiting YAP and its target gene expression, with potential implications for cancer prognosis and therapy. Cancer Res; 78(4); 950-61. ©2017 AACR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Integrinas/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Tenascina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Xenoinjertos , Humanos , Integrinas/genética , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal , Tenascina/genética , Factores de Transcripción , Transfección , Microambiente Tumoral , Proteínas Señalizadoras YAP
15.
Nat Commun ; 8(1): 1595, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150600

RESUMEN

Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs.


Asunto(s)
Inmunidad Innata , Inflamación/metabolismo , Tenascina/metabolismo , Receptor Toll-Like 4/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Epítopos/química , Epítopos/genética , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido , Transducción de Señal , Tenascina/química , Tenascina/genética , Receptor Toll-Like 4/química , Receptor Toll-Like 4/genética
16.
Arthritis Rheumatol ; 69(12): 2303-2313, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29084415

RESUMEN

OBJECTIVE: In addition to the long-established link with smoking, periodontitis (PD) is a risk factor for rheumatoid arthritis (RA). This study was undertaken to elucidate the mechanism by which PD could induce antibodies to citrullinated peptides (ACPAs), by examining the antibody response to a novel citrullinated peptide of cytokeratin 13 (CK-13) identified in gingival crevicular fluid (GCF), and comparing the response to 4 other citrullinated peptides in patients with RA who were well-characterized for PD and smoking. METHODS: The citrullinomes of GCF and periodontal tissue from patients with PD were mapped by mass spectrometry. ACPAs of CK13 (cCK13), tenascin-C (cTNC5), vimentin (cVIM), α-enolase (CEP-1), and fibrinogen ß (cFIBß) were examined by enzyme-linked immunosorbent assay in patients with RA (n = 287) and patients with osteoarthritis (n = 330), and cross-reactivity was assessed by inhibition assays. RESULTS: A novel citrullinated peptide cCK13-1 (444 TSNASGR-Cit-TSDV-Cit-RP458 ) identified in GCF exhibited elevated antibody responses in RA patients (24%). Anti-cCK13-1 antibody levels correlated with anti-cTNC5 antibody levels, and absorption experiments confirmed this was not due to cross-reactivity. Only anti-cCK13-1 and anti-cTNC5 were associated with antibodies to the periodontal pathogen Prevotella intermedia (P = 0.05 and P = 0.001, respectively), but not with antibodies to Porphyromonas gingivalis arginine gingipains. Levels of antibodies to CEP-1, cFIBß, and cVIM correlated with each other, and with smoking and shared epitope risk factors in RA. CONCLUSION: This study identifies 2 groups of ACPA fine specificities associated with different RA risk factors. One is predominantly linked to smoking and shared epitope, and the other links anti-cTNC5 and cCK13-1 to infection with the periodontal pathogen P intermedia.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/inmunología , Artritis Reumatoide/inmunología , Inmunidad Activa/inmunología , Periodontitis/inmunología , Prevotella intermedia/inmunología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/microbiología , Biomarcadores de Tumor/inmunología , Proteínas de Unión al ADN/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Fibrinógeno/inmunología , Líquido del Surco Gingival/inmunología , Líquido del Surco Gingival/microbiología , Humanos , Queratina-13/inmunología , Masculino , Espectrometría de Masas , Osteoartritis/complicaciones , Osteoartritis/inmunología , Osteoartritis/microbiología , Péptidos Cíclicos/inmunología , Periodontitis/complicaciones , Periodontitis/microbiología , Fosfopiruvato Hidratasa/inmunología , Fumar/inmunología , Tenascina/inmunología , Proteínas Supresoras de Tumor/inmunología , Vimentina/inmunología
18.
Ann Rheum Dis ; 75(10): 1876-83, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26659718

RESUMEN

OBJECTIVES: We investigated whether citrullinated tenascin-C (cTNC), an extracellular matrix protein expressed at high levels in the joints of patients with rheumatoid arthritis (RA), is a target for the autoantibodies in RA. METHODS: Citrullinated sites were mapped by mass spectrometry in the fibrinogen-like globe (FBG) domain of tenascin-C treated with peptidylarginine deiminases (PAD) 2 and 4. Antibodies to cyclic peptides containing citrullinated sites were screened in sera from patients with RA by ELISA. Potential cross-reactivity with well-established anticitrullinated protein antibody (ACPA) epitopes was tested by inhibition assays. The autoantibody response to one immunodominant cTNC peptide was then analysed in 101 pre-RA sera (median 7 years before onset) and two large independent RA cohorts. RESULTS: Nine arginine residues within FBG were citrullinated by PAD2 and PAD4. Two immunodominant peptides cTNC1 (VFLRRKNG-cit-ENFYQNW) and cTNC5 (EHSIQFAEMKL-cit-PSNF-cit-NLEG-cit-cit-KR) were identified. Antibodies to both showed limited cross-reactivity with ACPA epitopes from α-enolase, vimentin and fibrinogen, and no reactivity with citrullinated fibrinogen peptides sharing sequence homology with FBG. cTNC5 antibodies were detected in 18% of pre-RA sera, and in 47% of 1985 Swedish patients with RA and 51% of 287 North American patients with RA. The specificity was 98% compared with 160 healthy controls and 330 patients with osteoarthritis. CONCLUSIONS: There are multiple citrullination sites in the FBG domain of tenascin-C. Among these, one epitope is recognised by autoantibodies that are detected years before disease onset, and which may serve as a useful biomarker to identify ACPA-positive patients with high sensitivity and specificity in established disease.


Asunto(s)
Artritis Reumatoide/sangre , Autoanticuerpos/sangre , Péptidos Cíclicos/sangre , Tenascina/sangre , Adulto , Artritis Reumatoide/inmunología , Estudios de Casos y Controles , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Epítopos/inmunología , Femenino , Fibrinógeno/inmunología , Fibrinógeno/metabolismo , Humanos , Articulaciones/inmunología , Articulaciones/metabolismo , Masculino , Persona de Mediana Edad , América del Norte , Péptidos Cíclicos/inmunología , Suecia , Tenascina/inmunología , Reino Unido
19.
Cell Rep ; 5(2): 482-92, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24139798

RESUMEN

The extracellular matrix molecule tenascin-C (TNC) is a major component of the cancer-specific matrix, and high TNC expression is linked to poor prognosis in several cancers. To provide a comprehensive understanding of TNC's functions in cancer, we established an immune-competent transgenic mouse model of pancreatic ß-cell carcinogenesis with varying levels of TNC expression and compared stochastic neuroendocrine tumor formation in abundance or absence of TNC. We show that TNC promotes tumor cell survival, the angiogenic switch, more and leaky vessels, carcinoma progression, and lung micrometastasis. TNC downregulates Dickkopf-1 (DKK1) promoter activity through the blocking of actin stress fiber formation, activates Wnt signaling, and induces Wnt target genes in tumor and endothelial cells. Our results implicate DKK1 downregulation as an important mechanism underlying TNC-enhanced tumor progression through the provision of a proangiogenic tumor microenvironment.


Asunto(s)
Regulación hacia Abajo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Tenascina/metabolismo , Proteínas Wnt/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Transducción de Señal , Tenascina/deficiencia , Tenascina/genética , Proteínas Wnt/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA