Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 620, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783117

RESUMEN

A key player of excitable cells in the heart and brain is the L-type calcium channel CaV1.3. In the heart, it is required for voltage-dependent Ca2+-signaling, i.e., for controlling and modulating atrial cardiomyocyte excitation-contraction coupling. The clustering of CaV1.3 in functionally relevant channel multimers has not been addressed due to a lack of stoichiometric labeling combined with high-resolution imaging. Here, we developed a HaloTag-labeling strategy to visualize and quantify CaV1.3 clusters using STED nanoscopy to address the questions of cluster size and intra-cluster channel density. Channel clusters were identified in the plasma membrane of transfected live HEK293 cells as well as in giant plasma membrane vesicles derived from these cells that were spread on modified glass support to obtain supported plasma membrane bilayers (SPMBs). A small fraction of the channel clusters was colocalized with early and recycling endosomes at the membranes. STED nanoscopy in conjunction with live-cell and SPMB imaging enabled us to quantify CaV1.3 cluster sizes and their molecular density revealing significantly lower channel densities than expected for dense channel packing. CaV1.3 channel cluster size and molecular density were increased in SPMBs after treatment of the cells with the sympathomimetic compound isoprenaline, suggesting a regulated channel cluster condensation mechanism.


Asunto(s)
Canales de Calcio Tipo L , Membrana Celular , Humanos , Células HEK293 , Membrana Celular/metabolismo , Canales de Calcio Tipo L/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542157

RESUMEN

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.


Asunto(s)
ADN , Telómero , Humanos , Hibridación Fluorescente in Situ/métodos , Telómero/genética , Ciclo Celular/genética , División Celular
3.
Hum Genet ; 140(12): 1679-1693, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34545459

RESUMEN

The highly conserved YrdC domain-containing protein (YRDC) interacts with the well-described KEOPS complex, regulating specific tRNA modifications to ensure accurate protein synthesis. Previous studies have linked the KEOPS complex to a role in promoting telomere maintenance and controlling genome integrity. Here, we report on a newborn with a severe neonatal progeroid phenotype including generalized loss of subcutaneous fat, microcephaly, growth retardation, wrinkled skin, renal failure, and premature death at the age of 12 days. By trio whole-exome sequencing, we identified a novel homozygous missense mutation, c.662T > C, in YRDC affecting an evolutionary highly conserved amino acid (p.Ile221Thr). Functional characterization of patient-derived dermal fibroblasts revealed that this mutation impairs YRDC function and consequently results in reduced t6A modifications of tRNAs. Furthermore, we established and performed a novel and highly sensitive 3-D Q-FISH analysis based on single-telomere detection to investigate the impact of YRDC on telomere maintenance. This analysis revealed significant telomere shortening in YRDC-mutant cells. Moreover, single-cell RNA sequencing analysis of YRDC-mutant fibroblasts revealed significant transcriptome-wide changes in gene expression, specifically enriched for genes associated with processes involved in DNA repair. We next examined the DNA damage response of patient's dermal fibroblasts and detected an increased susceptibility to genotoxic agents and a global DNA double-strand break repair defect. Thus, our data suggest that YRDC may affect the maintenance of genomic stability. Together, our findings indicate that biallelic variants in YRDC result in a developmental disorder with progeroid features and might be linked to increased genomic instability and telomere shortening.


Asunto(s)
Discapacidades del Desarrollo/genética , Proteínas de Unión al GTP/genética , Progeria/genética , Proteínas de Unión al ARN/genética , Alelos , Consanguinidad , Daño del ADN , Discapacidades del Desarrollo/patología , Genoma Humano , Inestabilidad Genómica , Homocigoto , Humanos , Recién Nacido , Masculino , Mutación , Linaje , Progeria/patología , ARN de Transferencia/genética , Análisis de Secuencia de ARN , Acortamiento del Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA