Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401712, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923243

RESUMEN

The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2+ to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 is revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.

2.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791321

RESUMEN

The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and theoretically. UV-Vis studies indicate that the ligands and complexes exhibit hypochromism, which suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds with CT-DNA, in the range (2.3-9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-based potential drugs, suggesting that π-π stacking interaction due to the presence of the aromatic rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O-, N, S), instead of (O-, N, NH2). The docking studies indicate that the intercalative is preferred over the minor groove binding to CT-DNA with the order [Cu(L1H2am)(AcO)] > [Cu(L2H2am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2am)(AcO)], in line with the experimental Kb constants, obtained from the UV-Vis spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2am)(AcO)] is larger than [Cu(L1H2am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers, and donor sets are possible for a metal complex, a computational approach should be recommended to predict the type and strength of binding to DNA and, in general, to macromolecules.


Asunto(s)
Complejos de Coordinación , Cobre , ADN , Hesperidina , Bases de Schiff , ADN/química , ADN/metabolismo , Bases de Schiff/química , Hesperidina/química , Cobre/química , Complejos de Coordinación/química , Animales , Bovinos , Ligandos , Simulación del Acoplamiento Molecular , Isoniazida/química , Semicarbacidas/química
3.
Angew Chem Int Ed Engl ; 63(26): e202404955, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38639173

RESUMEN

A combined computational and experimental approach allowed us to develop overall the most selective catalyst for the direct hydrogenation of N-methyl, N-alkyl and N-aryl imines described to date. Iridium catalysts with a cyclometallated cyclic imide group provide selectivity of up to 99 % enantiomeric excess. Computational studies show that the selectivity results from the combined effect of H-bonding of the imide C=O with the substrate iminium ion and a stabilizing π-π interaction with the cyclometallated ligand. The cyclometallated ligand thus exhibits a unique mode of action, serving as a template for the H-bond directed approach of the substrate which results in enhanced selectivity. The catalyst (2) has been synthesized and isolated as a crystalline air-stable solid. X-ray analysis of 2 confirmed the structure of the catalyst and the correct position of the imide C=O groups to engage in an H-bond with the substrate. 19F NMR real-time monitoring showed the hydrogenation of N-methyl imines catalyzed by 2 is very fast, with a TOF of approx. 3500 h-1.

4.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593611

RESUMEN

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Cobre , ADN , Cobre/química , ADN/química , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ligandos , Hidrazinas/química , Hidrazinas/farmacología , Línea Celular Tumoral , Piridinas/química , Piridinas/farmacología , Simulación del Acoplamiento Molecular , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química
5.
Angew Chem Int Ed Engl ; 62(50): e202310655, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768728

RESUMEN

High-resolution crystal structures of lysozyme in the presence of the potential drug VIV O(acetylacetonato)2 under two different experimental conditions have been solved. The crystallographic study reveals the loss of the ligands, the oxidation of VIV to VV and the subsequent formation of adducts of the protein with two different polyoxidovanadates: [V4 O12 ]4- , which interacts with lysozyme non-covalently, and the unprecedented [V20 O54 (NO3 )]n- , which is covalenty bound to the side chain of an aspartate residue of symmetry related molecules.


Asunto(s)
Muramidasa , Proteínas , Muramidasa/química , Oxidación-Reducción , Vanadio/química , Ligandos
6.
Inorg Chem ; 62(21): 8407-8417, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37195003

RESUMEN

Vanadium complexes (VCs) are promising agents for the treatment, among others, of diabetes and cancer. The development of vanadium-based drugs is mainly limited by a scarce knowledge of the active species in the target organs, which is often determined by the interaction of VCs with biological macromolecules like proteins. Here, we have studied the binding of [VIVO(empp)2] (where Hempp is 1-methyl-2-ethyl-3-hydroxy-4(1H)-pyridinone), an antidiabetic and anticancer VC, with the model protein hen egg white lysozyme (HEWL) by electrospray ionization-mass spectrometry (ESI-MS), electron paramagnetic resonance (EPR), and X-ray crystallography. ESI-MS and EPR techniques reveal that, in aqueous solution, both the species [VIVO(empp)2] and [VIVO(empp)(H2O)]+, derived from the first one upon the loss of a empp(-) ligand, interact with HEWL. Crystallographic data, collected under different experimental conditions, show covalent binding of [VIVO(empp)(H2O)]+ to the side chain of Asp48, and noncovalent binding of cis-[VIVO(empp)2(H2O)], [VIVO(empp)(H2O)]+, [VIVO(empp)(H2O)2]+, and of an unusual trinuclear oxidovanadium(V) complex, [VV3O6(empp)3(H2O)], with accessible sites on the protein surface. The possibility of covalent and noncovalent binding with different strength and of interaction with various sites favor the formation of adducts with the multiple binding of vanadium moieties, allowing the transport in blood and cellular fluids of more than one metal-containing species with a possible amplification of the biological effects.


Asunto(s)
Proteínas , Vanadio , Vanadio/química , Piridonas/química , Agua , Espectrometría de Masa por Ionización de Electrospray
7.
Chem Commun (Camb) ; 59(43): 6521-6524, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37158731

RESUMEN

The factors driving the Ni0(binap)/CuI(phospherrox) cooperative asymmetric propargylation of aldimine esters are unveiled through DFT calculations. The system is fully explored accounting for conformational complexity and aggregation steps. The activation of the substrates proceeds independently, while the intercatalyst communication occurs both through indirect cooperativity, exchanging the non-innocent MeOCO2-, and through direct cooperation in the stereoselective C-C coupling driven by intercatalyst interactions.

8.
Inorg Chem ; 62(20): 7932-7953, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37154533

RESUMEN

A series of mononuclear non-oxido vanadium(IV) complexes, [VIV(L1-4)2] (1-4), featuring tridentate bi-negative ONS chelating S-alkyl/aryl-substituted dithiocarbazate ligands H2L1-4, are reported. All the synthesized non-oxido VIV compounds are characterized by elemental analysis, spectroscopy (IR, UV-vis, and EPR), ESI-MS, as well as electrochemical techniques (cyclic voltammetry). Single-crystal X-ray diffraction studies of 1-3 reveal that the mononuclear non-oxido VIV complexes show distorted octahedral (1 and 2) or trigonal prismatic (3) arrangement around the non-oxido VIV center. EPR and DFT data indicate the coexistence of mer and fac isomers in solution, and ESI-MS results suggest a partial oxidation of [VIV(L1-4)2] to [VV(L1-4)2]+ and [VVO2(L1-4)]-; therefore, all these three complexes are plausible active species. Complexes 1-4 interact with bovine serum albumin (BSA) with a moderate binding affinity, and docking calculations reveal non-covalent interactions with different regions of BSA, particularly with Tyr, Lys, Arg, and Thr residues. In vitro cytotoxic activity of all complexes is assayed against the HT-29 (colon cancer) and HeLa (cervical cancer) cells and compared with the NIH-3T3 (mouse embryonic fibroblast) normal cell line by MTT assay and DAPI staining. The results suggest that complexes 1-4 are cytotoxic in nature and induce cell death in the cancer cell lines by apoptosis and that a mixture of VIV, VV, and VVO2 species could be responsible for the biological activity.


Asunto(s)
Complejos de Coordinación , Ratones , Humanos , Animales , Complejos de Coordinación/química , Fibroblastos , Células HeLa , Vanadio/química , Quelantes , Ligandos
9.
Front Chem ; 11: 1106349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025548

RESUMEN

We report the synthesis and characterization of a group of benzoylhydrazones (Ln) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing distinct para substituents (R = H, Cl, F, CH3, OCH3, OH and NH2, for L1-7, respectively; in L8 isonicotinohydrazide was used instead of benzylhydrazide). Cu(II) complexes were prepared by reaction of each benzoylhydrazone with Cu(II) acetate. All compounds were characterized by elemental analysis and mass spectrometry as well as by FTIR, UV-visible absorption, NMR or electron paramagnetic resonance spectroscopies. Complexes isolated in the solid state (1-8) are either formulated as [Cu(HL)acetate] (with L1 and L4) or as [Cu(Ln)]3 (n = 2, 3, 5, 6, 7 and 8). Single crystal X-ray diffraction studies were done for L5 and [Cu(L5)]3, confirming the trinuclear formulation of several complexes. Proton dissociation constants, lipophilicity and solubility were determined for all free ligands by UV-Vis spectrophotometry in 30% (v/v) DMSO/H2O. Formation constants were determined for [Cu(LH)], [Cu(L)] and [Cu(LH-1)] for L = L1, L5 and L6, and also [Cu(LH-2)] for L = L6, and binding modes are proposed, [Cu(L)] predominating at physiological pH. The redox properties of complexes formed with L1, L5 and L6 are investigated by cyclic voltammetry; the formal redox potentials fall in the range of +377 to +395 mV vs. NHE. The binding of the Cu(II)-complexes to bovine serum albumin was evaluated by fluorescence spectroscopy, showing moderate-to-strong interaction and suggesting formation of a ground state complex. The interaction of L1, L3, L5 and L7, and of the corresponding complexes with calf thymus DNA was evaluated by thermal denaturation. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. The complexes show higher activity than the corresponding free ligand, and most complexes are more active than cisplatin. Compounds 1, 3, 5, and 8 were selected for additional studies: while these complexes induce reactive oxygen species and double-strand breaks in both cancer cells, their ability to induce cell-death by apoptosis varies. Within the set of compounds tested, 8 emerges as the most promising one, presenting low IC50 values, and high induction of oxidative stress and DNA damage, which eventually lead to high rates of apoptosis.

10.
J Org Chem ; 88(2): 1185-1193, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36579612

RESUMEN

The Ru-catalyzed intramolecular oxidative amidation (lactamization) of aromatic alkynylamines with 4-picoline N-oxide as an external oxidant has been developed. This chemoselective process is very efficient to achieve medium-sized ε- and ζ-lactams (seven- and eight-membered rings) but not for the formation of common δ-lactams (six-membered rings). DFT studies unveiled the capital role of the chain length between the amine and the alkyne functionalities: the longer the connector, the more favored the lactamization process vs hydroamination.


Asunto(s)
Aminas , Lactamas , Teoría Funcional de la Densidad , Catálisis , Estrés Oxidativo
11.
Inorg Chem ; 61(43): 17068-17079, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36250592

RESUMEN

Many biological systems obtain their activity by the inclusion of metalloporphyrins into one or several binding pockets. However, decoding the molecular mechanism under which these compounds bind to their receptors is something that has not been widely explored and is a field with open questions. In the present work, we apply computational techniques to unravel and compare the mechanisms of two heme-binding systems, concretely the HasA hemophores from Gram negative bacteria Serratiamarcescens (HasAsm) and Yersinia pestis (HasAyp). Despite the high sequence identity between both systems, the comparison between the X-ray structures of their apo and holo forms suggests different heme-binding mechanisms. HasAyp has extremely similar structures for heme-free and heme-bound forms, while HasAsm presents a very large displacement of a loop that ultimately leads to an additional coordination to the metal with respect to HasAyp. We combined Gaussian accelerated molecular dynamics simulations (GaMDs) in explicit solvent and protein-ligand docking optimized for metalloligands. GaMDs were first carried out on heme-free forms of both hemophores. Then, protein-ligand dockings of the heme were performed on cluster representatives of these simulations and the best poses were then subjected to a new series of GaMDs. A series of analyses reveal the following: (1) HasAyp has a conformational landscape extremely similar between heme-bound and unbound states with no to limited impact on the binding of the cofactor, (2) HasAsm presents as a slightly broader conformational landscape in its apo state but can only visit conformations similar to the X-ray of the holo form when the heme has been bound. Such behavior results from a complex cascade of changes in interactions that spread from the heme-binding pocket to the flexible loop previously mentioned. This study sheds light on the diversity of molecular mechanisms of heme-binding and discusses the weight between the pre-organization of the receptor as well as the induced motions resulting in association.


Asunto(s)
Proteínas Bacterianas , Hemo , Ligandos , Proteínas Bacterianas/química , Hemo/química , Proteínas Portadoras/química , Simulación de Dinámica Molecular , Conformación Proteica
12.
Inorg Chem ; 61(41): 16458-16467, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36205235

RESUMEN

The interaction with proteins of metal-based drugs plays a crucial role in their transport, mechanism, and activity. For an active MLn complex, where L is the organic carrier, various binding modes (covalent and non-covalent, single or multiple) may occur and several metal moieties (M, ML, ML2, etc.) may interact with proteins. In this study, we have evaluated the interaction of [VIVO(malt)2] (bis(maltolato)oxidovanadium(IV) or BMOV, where malt = maltolato, i.e., the common name for 3-hydroxy-2-methyl-4H-pyran-4-onato) with the model protein hen egg white lysozyme (HEWL) by electrospray ionization mass spectrometry, electron paramagnetic resonance, and X-ray crystallography. The multiple binding of different V-containing isomers and enantiomers to different sites of HEWL is observed. The data indicate both non-covalent binding of cis-[VO(malt)2(H2O)] and [VO(malt)(H2O)3]+ and covalent binding of [VO(H2O)3-4]2+ and cis-[VO(malt)2] and other V-containing fragments to the side chains of Glu35, Asp48, Asn65, Asp87, and Asp119 and to the C-terminal carboxylate. Our results suggest that the multiple and variable interactions of potential VIVOL2 drugs with proteins can help to better understand their solution chemistry and contribute to define the molecular basis of the mechanism of action of these intriguing molecules.


Asunto(s)
Muramidasa , Proteínas , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Muramidasa/química , Piranos
13.
J Inorg Biochem ; 235: 111932, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35940023

RESUMEN

We report the synthesis and characterization of a family of benzohydrazones (Ln, n = 1-6) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing different substituents in the para position. Their oxidovanadium(IV) complexes were prepared and compounds with 1:1 and 1:2 metal-to-ligand stoichiometry were obtained. All compounds were characterized by elemental analyses and mass spectrometry as well as FTIR, UV-visible absorption, NMR (ligand precursors) and EPR (complexes) spectroscopies, and by DFT computational methods. Proton dissociation constants, lipophilicity and solubility in aqueous media were determined for all ligand precursors. Complex formation with V(IV)O was evaluated by spectrophotometry for L4 (Me-substituted) and L6 (OH-substituted) and formation constants for mono [VO(HL)]+, [VO(L)] and bis [VO(HL)2], [VO(HL)(L)]-, [VO(L)2]2- complexes were determined. EPR spectroscopy indicates the formation of [VO(HL)]+ and [VO(HL)2], with this latter being the major species at the physiological pH. Noteworthy, the EPR data suggest a different behaviour for L4 and L6, which confirm the results obtained in the solid state. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. All complexes show much higher activity on A-375 (IC50 < 6.3 µM) than in A-549 cells (IC50 > 20 µM). Complex 3 (F-substituted) shows the lowest IC50 on both cell lines and lower than cisplatin (in A-375). Studies identified this compound as the one showing the highest increase in Annexin-V staining, caspase activity and induction of double stranded breaks, corroborating the cytotoxicity results. The mechanism of action of the complexes involves reactive oxygen species (ROS) induced DNA damage, and cell death by apoptosis.


Asunto(s)
Complejos de Coordinación , Hidrazonas , Cisplatino , Complejos de Coordinación/química , Hidrazonas/química , Hidrazonas/farmacología , Ligandos , Oxiquinolina/farmacología , Vanadio/química
14.
J Inorg Biochem ; 233: 111853, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35598422

RESUMEN

Herein we report the synthesis of five new mononuclear mixed ligand oxidovanadium(IV) complexes [VIVO(L1-3)(LNN)] (1-5) with tridentate O,N,O-donor aroylhydrazones as main ligand (H2L1-3) and N,N-chelating 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) as co-ligand (LNN). The complexes were characterized by elemental and thermogravimetric analysis (TGA), IR, UV-vis, and electron paramagnetic resonance (EPR) spectroscopy, electrospray ionization-mass spectrometry (ESI-MS) and cyclic voltammetry (CV). The structure of 1-5 was confirmed by single crystal X-ray analysis and also optimized by density functional theory (DFT) methods. At physiological pH an equilibrium [VIVO(L1-3)(LNN)] + H2O ⇄ [VIVO(L1-3)(H2O)] + LNN, shifted towards left, is established, with water molecule that could be replaced by the biomolecules of the organism. The studies on the interaction with two proteins, lysozyme (Lyz) chosen as a representative model of a small protein, and human serum albumin (HSA) show that two types of binding are possible: a non-covalent binding through the accessible residues on protein surface with [VIVO(L1-3)(LNN)] keeping its octahedral structure, and a covalent binding upon the replacement of water in [VIVO(L1-3)(H2O)] with His-N donors to form VIVO(L1-3)(HSA). In vitro cytotoxicity of ligands and complexes were screened against human cervical cancer (HeLa) (IC50 = 7.39-15.13 µM), colon cancer (HT-29) (IC50 = 11.04-28.20 µM) and mouse embryonic fibroblast (NIH-3T3) cell lines (IC50 = 62.22-87.75 µM) by MTT assay. Particularly, 5 showed higher cytotoxicity than cisplatin and cyclophosphamide, with an IC50 of 7.39 ± 1.21 µM and 11.04 ± 0.29 µM against HeLa and HT-29.


Asunto(s)
Complejos de Coordinación , Animales , Complejos de Coordinación/química , Fibroblastos , Humanos , Ligandos , Ratones , Albúmina Sérica Humana/química , Agua
15.
Chemistry ; 28(40): e202200105, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35486702

RESUMEN

Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.


Asunto(s)
Compuestos Organometálicos , Vanadio , Compuestos Organometálicos/química , Fenantrolinas , Proteínas , Tripsina , Vanadio/química , Rayos X
16.
Inorg Chem ; 61(10): 4513-4532, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35213131

RESUMEN

The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(µ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, µ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.


Asunto(s)
Peróxido de Hidrógeno , Molibdeno , ADN/química , Ligandos , Molibdeno/química , Molibdeno/farmacología , Agua/química
17.
Faraday Discuss ; 234(0): 349-366, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35147145

RESUMEN

Molecular modelling applications in metalloenzyme design are still scarce due to a series of challenges. On top of that, the simulations of metal-mediated binding and the identification of catalytic competent geometries require both large conformational exploration and simulation of fine electronic properties. Here, we demonstrate how the incorporation of new tools in multiscale strategies, namely substrate diffusion exploration, allows taking a step further. As a showcase, the enantioselective profiles of the most outstanding variants of an artificial Rh2-based cyclopropanase (GSH, HFF and RFY) developed by Lewis and co-workers (Nat. Commun., 2015, 6, 7789 and Nat. Chem., 2018, 10, 318-324) have been rationalized. DFT calculations on the free-cofactor-mediated process identify the carbene insertion and the cyclopropanoid formation as crucial events, the latter being the enantiodetermining step, which displays up to 8 competitive orientations easily altered by the protein environment. The key intermediates of the reaction were docked into the protein scaffold showing that some mutated residues have direct interaction with the cofactor and/or the co-substrate. These interactions take the form of a direct coordination of Rh in GSH and HFF and a strong hydrophobic patch with the carbene moiety in RFY. Posterior molecular dynamics sustain that the cofactor induces global re-arrangements of the protein. Finally, massive exploration of substrate diffusion, based on the GPathFinder approach, defines this event as the origin of the enantioselectivity in GSH and RFY. For HFF, fine molecular dockings suggest that it is likely related to local interactions upon diffusion. This work shows how modelling of long-range mutations on the catalytic profiles of metalloenzymes may be unavoidable and software simulating substrate diffusion should be applied.


Asunto(s)
Metaloproteínas , Catálisis , Humanos , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Simulación de Dinámica Molecular
18.
Commun Chem ; 5(1): 75, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-36697641

RESUMEN

RAS oncoproteins are molecular switches associated with critical signaling pathways that regulate cell proliferation and differentiation. Mutations in the RAS family, mainly in the KRAS isoform, are responsible for some of the deadliest cancers, which has made this protein a major target in biomedical research. Here we demonstrate that a designed bis-histidine peptide derived from the αH helix of the cofactor SOS1 binds to KRAS with high affinity upon coordination to Pd(II). NMR spectroscopy and MD studies demonstrate that Pd(II) has a nucleating effect that facilitates the access to the bioactive α-helical conformation. The binding can be suppressed by an external metal chelator and recovered again by the addition of more Pd(II), making this system the first switchable KRAS binder, and demonstrates that folding-upon-binding mechanisms can operate in metal-nucleated peptides. In vitro experiments show that the metallopeptide can efficiently internalize into living cells and inhibit the MAPK kinase cascade.

19.
Inorg Chem ; 60(24): 19098-19109, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34847328

RESUMEN

The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.


Asunto(s)
Ribonucleasa Pancreática
20.
Inorg Chem ; 60(21): 16492-16506, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664950

RESUMEN

Three different oxidovanadium(IV) porphyrin dimers with anti, cis, and trans arrangements of the two rings have been synthesized by changing the bridge between the porphyrin macrocycles. This provides a unique opportunity to investigate the role of the bridge and spatial arrangement between the two VIVO centers for their electronic communication and magnetic coupling. They were characterized by the combined application of XRD analysis, UV-vis and electron paramagnetic resonance (EPR) spectroscopy, cyclic voltammetry, magnetic susceptibility, and DFT calculations. One- and two-electron oxidations produce mono- and dication diradical species, respectively, which display an unusual ferromagnetic interaction between the unpaired spins of vanadium(IV) and porphyrin π-cation radical, in contrast to other metalloporphyrin dimers. The oxidized species show a dissimilar behavior between cis and trans isomers. The ferromagnetic coupling occurs between the porphyrin π-cation radical and the unpaired electron of the VIVO ion on the dxy orbital, orthogonal to the porphyrin-based molecular orbitals a1u and a2u.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...