Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(4): 883-897, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38328936

RESUMEN

BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.


Asunto(s)
Receptores de Lisoesfingolípidos , Migración Transendotelial y Transepitelial , Ratones , Animales , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Esfingosina/metabolismo , Células Mieloides/metabolismo , Lisofosfolípidos/metabolismo , Túnica Íntima/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
2.
J Immunol ; 211(10): 1561-1577, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37756544

RESUMEN

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.7 cells. Mφs were cultured for 24 h with oxidized low-density lipoprotein (oxLDL) or cholesterol and then were stimulated with LPS. Transcriptomics revealed that oxLDL accumulation in Mφs downregulated inflammatory, hypoxia, and cholesterol metabolism pathways, whereas the antioxidant pathway, fatty acid oxidation, and ABC family proteins were upregulated. Metabolomics and extracellular metabolic flux assays showed that oxLDL accumulation suppressed LPS-induced glycolysis. Intracellular lipid accumulation in Mφs impaired LPS-induced inflammation by reducing both hypoxia-inducible factor 1-α (HIF-1α) stability and transactivation capacity; thus, the phenotype was not rescued in Vhl-/- Mφs. Intracellular lipid accumulation in Mφs also enhanced LPS-induced NF erythroid 2-related factor 2 (Nrf2)-mediated antioxidative defense that destabilizes HIF-1α, and Nrf2-deficient Mφs resisted the inhibitory effects of lipid accumulation on glycolysis and inflammatory gene expression. Furthermore, oxLDL shifted NADPH consumption from HIF-1α- to Nrf2-regulated apoenzymes. Thus, we postulate that repurposing NADPH consumption from HIF-1α to Nrf2 transcriptional pathways is critical in modulating inflammatory responses in Mφs with accumulated intracellular lipid. The relevance of our in vitro models was established by comparative transcriptomic analyses, which revealed that Mφs cultured with oxLDL and stimulated with LPS shared similar inflammatory and metabolic profiles with foamy Mφs derived from the atherosclerotic mouse and human aorta.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Lipopolisacáridos/metabolismo , NADP/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Glucólisis , Aterosclerosis/metabolismo , Colesterol/metabolismo , Antioxidantes/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
Can J Cardiol ; 39(12): 1781-1794, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716639

RESUMEN

High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/metabolismo , Túnica Íntima , Fenotipo
5.
Curr Opin Lipidol ; 33(5): 271-276, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979994

RESUMEN

PURPOSE OF REVIEW: To highlight recent conceptual and technological advances that have positioned the field to interrogate the cellular and molecular mechanisms contributing to the initiation of atherosclerosis, including intimal lipid accumulation, inflammation, and lesion growth. RECENT FINDINGS: Advances in the understanding of endothelial LDL transcytosis and rapid lipid uptake by intimal macrophages provide mechanistic insights into intimal LDL accumulation and the initiation of atherogenesis. Recent studies have used unbiased single-cell approaches, such as single-cell RNA sequencing and CyTOF, to characterize the cellular components of the normal intima and atherosclerotic lesions. In-vitro studies and high-resolution transcriptomic analysis of aortic intimal lipid-loaded versus lipid-poor myeloid populations in vivo suggest that lipid-loaded macrophages may not be the primary drivers of inflammation in atherosclerotic lesions. SUMMARY: A new perspective on the complex cellular landscape of the aorta, specifically the atherosclerosis-prone regions, confirm that intimal accumulation of lipid, monocyte recruitment, and macrophage accumulation are key events in atherogenesis triggered by hypercholesterolemia. Targeting these early events may prove to be a promising strategy for the attenuation of lesion development; however, the specific details of how hypercholesterolemia acts to initiate early inflammatory events remain to be fully elucidated.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Humanos , Hipercolesterolemia/patología , Inflamación/patología , Lípidos
6.
Metabolites ; 11(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34357353

RESUMEN

Lipoprotein(a) (Lp(a)) is one of the most important risk factors for the development of calcific aortic valve stenosis (CAVS). However, the mechanisms through which Lp(a) causes CAVS are currently unknown. Our objectives were to characterize the Lp(a) proteome and to identify proteins that may be differentially associated with Lp(a) in patients with versus without CAVS. Our second objective was to identify genes that may be differentially regulated by exposure to high versus low Lp(a) levels in explanted aortic valves from patients with CAVS. We isolated Lp(a) from the blood of 21 patients with CAVS and 22 volunteers and performed untargeted label-free analysis of the Lp(a) proteome. We also investigated the transcriptomic signature of calcified aortic valves from patients who underwent aortic valve replacement with high versus low Lp(a) levels (n = 118). Proteins involved in the protein activation cascade, platelet degranulation, leukocyte migration, and response to wounding may be associated with Lp(a) depending on CAVS status. The transcriptomic analysis identified genes involved in cardiac aging, chondrocyte development, and inflammation as potentially influenced by Lp(a). Our multi-omic analyses identified biological pathways through which Lp(a) may cause CAVS, as well as key molecular events that could be triggered by Lp(a) in CAVS development.

7.
CJC Open ; 3(4): 450-459, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34027348

RESUMEN

BACKGROUND: Lipoprotein(a) (Lp[a]), which consists of a low-density lipoprotein (LDL) bound to apolipoprotein(a), is one of the strongest genetic risk factors for atherosclerotic cardiovascular diseases. Few studies have performed hypothesis-free direct comparisons of the Lp(a) and the LDL proteomes. Our objectives were to compare the Lp(a) and the LDL proteomic profiles and to evaluate the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile. METHODS: We performed a label-free analysis of the Lp(a) and LDL proteomic profiles of healthy volunteers in a discovery (n = 6) and a replication (n = 9) phase. We performed inverse variance weighted Mendelian randomization to document the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile of participants of the INTERVAL study. RESULTS: We identified 15 proteins that were more abundant on Lp(a) compared with LDL (serping1, pi16, itih1, itih2, itih3, pon1, podxl, cd44, cp, ptprg, vtn, pcsk9, igfals, vcam1, and ttr). We found no proteins that were more abundant on LDL compared with Lp(a). After correction for multiple testing, lifelong exposure to elevated LDL cholesterol levels was associated with the variation of 18 plasma proteins whereas Lp(a) did not appear to influence the plasma proteome. CONCLUSIONS: Results of this study highlight marked differences in the proteome of Lp(a) and LDL as well as in the effect of lifelong exposure to elevated LDL cholesterol or Lp(a) on the plasma proteomic profile.


CONTEXTE: La lipoprotéine(a) (Lp[a]), qui est constituée d'une lipoprotéine de basse densité (LDL) liée à une apolipoprotéine(a), est l'un des plus importants facteurs de risque génétiques de survenue d'une maladie cardiovasculaire athéroscléreuse. Peu d'études comparatives directes sans hypothèse ont porté sur le protéome de la Lp(a) et celui des LDL. Nos objectifs étaient de comparer les profils protéomiques de la Lp(a) et des LDL et d'évaluer l'effet d'une exposition à vie à un taux élevé de Lp(a) ou de cholestérol LDL sur le profil protéomique plasmatique. MÉTHODOLOGIE: Nous avons réalisé une analyse sans marquage des profils protéomiques de la Lp(a) et des LDL chez des volontaires en bonne santé dans le cadre d'une phase de découverte (n = 6) et d'une phase de réplication (n = 9). Pour rendre compte de l'effet d'une exposition à vie à un taux élevé de Lp(a) ou de cholestérol des LDL sur le profil protéomique plasmatique des participants de l'étude INTERVAL, nous avons utilisé une analyse de randomisation Mendélienne avec pondération par l'inverse de la variance. RÉSULTATS: Nous avons relevé 15 protéines associées en plus grande abondance à la Lp(a) qu'aux LDL (serping1, pi16, itih1, itih2, itih3, pon1, podxl, cd44, cp, ptprg, vtn, pcsk9, igfals, vcam1 et ttr). Nous n'avons noté aucune protéine associée en plus grande abondance aux LDL qu'à la Lp(a). Après correction pour tenir compte de la multiplicité des tests, l'exposition à vie à un taux élevé de cholestérol LDL a été associée à la variation de 18 protéines plasmatiques, tandis que le taux de Lp(a) ne semblait pas influencer le protéome plasmatique. CONCLUSIONS: Les résultats de notre étude font ressortir les différences marquées entre le protéome de la Lp(a) et celui des LDL, ainsi qu'entre l'effet sur le profil protéomique plasmatique de l'exposition à vie à un taux élevé de cholestérol LDL et celui de l'exposition à vie à un taux élevé de Lp(a).

8.
J Mol Cell Cardiol ; 156: 69-78, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33781821

RESUMEN

One of the hallmarks of atherosclerosis is ongoing accumulation of macrophages in the artery intima beginning at disease onset. Monocyte recruitment contributes to increasing macrophage abundance at early stages of atherosclerosis. Although the chemokine CCL5 (RANTES) has been studied in atherosclerosis, its role in the recruitment of monocytes to early lesions has not been elucidated. We show that expression of Ccl5 mRNA, as well as other ligands of the CCR5 receptor (Ccl3 and Ccl4), is induced in the aortic intima of Ldlr-/- mice 3 weeks after the initiation of cholesterol-rich diet (CRD)-induced hypercholesterolemia. En face immunostaining revealed that CCL5 protein expression is also upregulated at 3 weeks of CRD. Blockade of CCR5 significantly reduced monocyte recruitment to 3-week lesions, suggesting that chemokine signaling through CCR5 is critical. However, we observed that Ccl5-deficiency had no effect on early lesion formation and CCL5-blockade did not affect monocyte recruitment in Ldlr-/- mice. Immunostaining of the lesions in Ldlr-/- mice and reciprocal bone marrow transplantation (BMT) of Ccl5+/+ and Ccl5-/- mice revealed that CCL5 is expressed by both myeloid and endothelial cells. BMT experiments were carried out to determine if CCL5 produced by distinct cells has functions that may be concealed in Ccl5-/-Ldlr-/- mice. We found that hematopoietic cell-derived CCL5 regulates monocyte recruitment and the abundance of intimal macrophages in 3-week lesions of Ldlr-/- mice but plays a minor role in 6-week lesions. Our findings suggest that there is a short window in early lesion formation during which myeloid cell-derived CCL5 has a critical role in monocyte recruitment and macrophage abundance.


Asunto(s)
Aterosclerosis/etiología , Aterosclerosis/metabolismo , Biomarcadores , Quimiocina CCL5/genética , Susceptibilidad a Enfermedades , Células Mieloides/metabolismo , Animales , Aterosclerosis/patología , Quimiocina CCL5/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/genética , Transducción de Señal
9.
Circ Res ; 128(4): 530-543, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397122

RESUMEN

RATIONALE: Bone marrow transplantation (BMT) is used frequently to study the role of hematopoietic cells in atherosclerosis, but aortic arch lesions are smaller in mice after BMT. OBJECTIVE: To identify the earliest stage of atherosclerosis inhibited by BMT and elucidate potential mechanisms. METHODS AND RESULTS: Ldlr-/- mice underwent total body γ-irradiation, bone marrow reconstitution, and 6-week recovery. Atherosclerosis was studied in the ascending aortic arch and compared with mice without BMT. In BMT mice, neutral lipid and myeloid cell topography were lower in lesions after feeding a cholesterol-rich diet for 3, 6, and 12 weeks. Lesion coalescence and height were suppressed dramatically in mice post-BMT, whereas lateral growth was inhibited minimally. Targeted radiation to the upper thorax alone reproduced the BMT phenotype. Classical monocyte recruitment, intimal myeloid cell proliferation, and apoptosis did not account for the post-BMT phenotype. Neutral lipid accumulation was reduced in 5-day lesions, thus we developed quantitative assays for LDL (low-density lipoprotein) accumulation and paracellular leakage using DiI-labeled human LDL and rhodamine B-labeled 70 kD dextran. LDL accumulation was dramatically higher in the intima of Ldlr-/- relative to Ldlr+/+ mice, and was inhibited by injection of HDL mimics, suggesting a regulated process. LDL, but not dextran, accumulation was lower in mice post-BMT both at baseline and in 5-day lesions. Since the transcript abundance of molecules implicated in LDL transcytosis was not significantly different in the post-BMT intima, transcriptomics from whole aortic arch intima, and at single-cell resolution, was performed to give insights into pathways modulated by BMT. CONCLUSIONS: Radiation exposure inhibits LDL entry into the aortic intima at baseline and the earliest stages of atherosclerosis. Single-cell transcriptomic analysis suggests that LDL uptake by endothelial cells is diverted to lysosomal degradation and reverse cholesterol transport pathways. This reduces intimal accumulation of lipid and impacts lesion initiation and growth.


Asunto(s)
Aterosclerosis/metabolismo , Rayos gamma , Lipoproteínas LDL/metabolismo , Túnica Íntima/efectos de la radiación , Animales , Aorta/metabolismo , Aorta/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transcriptoma , Túnica Íntima/metabolismo
10.
JACC Basic Transl Sci ; 5(9): 888-897, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015412

RESUMEN

Our objectives were to determine whether autotaxin (ATX) is transported by lipoprotein(a) [Lp(a)] in human plasma and if could be used as a biomarker of calcific aortic valve stenosis (CAVS). We first found that ATX activity was higher in Lp(a) compared to low-density lipoprotein fractions in isolated fractions of 10 healthy participants. We developed a specific assay to measure ATX-Lp(a) in 88 patients with CAVS and 144 controls without CAVS. In a multivariable model corrected for CAVS risk factors, ATX-Lp(a) was associated with CAVS (p = 0.003). We concluded that ATX is preferentially transported by Lp(a) and might represent a novel biomarker for CAVS.

11.
Circ Res ; 127(3): 402-426, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32673538

RESUMEN

The diverse leukocyte infiltrate in atherosclerotic mouse aortas was recently analyzed in 9 single-cell RNA sequencing and 2 mass cytometry studies. In a comprehensive meta-analysis, we confirm 4 known macrophage subsets-resident, inflammatory, interferon-inducible cell, and Trem2 (triggering receptor expressed on myeloid cells-2) foamy macrophages-and identify a new macrophage subset resembling cavity macrophages. We also find that monocytes, neutrophils, dendritic cells, natural killer cells, innate lymphoid cells-2, and CD (cluster of differentiation)-8 T cells form prominent and separate immune cell populations in atherosclerotic aortas. Many CD4 T cells express IL (interleukin)-17 and the chemokine receptor CXCR (C-X-C chemokine receptor)-6. A small number of regulatory T cells and T helper 1 cells is also identified. Immature and naive T cells are present in both healthy and atherosclerotic aortas. Our meta-analysis overcomes limitations of individual studies that, because of their experimental approach, over- or underrepresent certain cell populations. Mass cytometry studies demonstrate that cell surface phenotype provides valuable information beyond the cell transcriptomes. The present analysis helps resolve some long-standing controversies in the field. First, Trem2+ foamy macrophages are not proinflammatory but interferon-inducible cell and inflammatory macrophages are. Second, about half of all foam cells are smooth muscle cell-derived, retaining smooth muscle cell transcripts rather than transdifferentiating to macrophages. Third, Pf4, which had been considered specific for platelets and megakaryocytes, is also prominently expressed in the main population of resident vascular macrophages. Fourth, a new type of resident macrophage shares transcripts with cavity macrophages. Finally, the discovery of a prominent innate lymphoid cell-2 cluster links the single-cell RNA sequencing work to recent flow cytometry data suggesting a strong atheroprotective role of innate lymphoid cells-2. This resolves apparent discrepancies regarding the role of T helper 2 cells in atherosclerosis based on studies that predated the discovery of innate lymphoid cells-2 cells.


Asunto(s)
Aorta/inmunología , Enfermedades de la Aorta/inmunología , Aterosclerosis/inmunología , Leucocitos/inmunología , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Leucocitos/metabolismo , Leucocitos/patología , Fenotipo , Placa Aterosclerótica , RNA-Seq , Análisis de la Célula Individual , Transcriptoma
12.
Thromb Res ; 169: 1-7, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990619

RESUMEN

Lipoprotein(a) [Lp(a)] is an enigmatic lipoprotein which has been identified as a causal risk factor for coronary heart disease and calcific aortic valve disease. Lp(a) consists of a low-density lipoprotein (LDL) moiety covalently linked to the unique glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) is homologous to the fibrinolytic zymogen plasminogen and thus may interfere with plasminogen activation. Conversion of native Glu-plasminogen by plasmin to the more readily activatable Lys-plasminogen greatly accelerates plasminogen activation and is necessary for optimal stimulation of plasminogen activation on endothelial cells. Lp(a)/apo(a) has been previously shown to inhibit pericellular plasminogen activation on vascular cells, but the mechanism underling these observations is unknown. We therefore explored whether apo(a) can inhibit pericellular Glu- to Lys-plasminogen conversion on cell surfaces. A physiologically relevant recombinant version of apo(a) (17K) significantly inhibits plasmin-mediated Glu- to Lys-plasminogen conversion on human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs). All isoforms of apo(a) that were analyzed, ranging in size from 3 to 21 kringle IV type 2 repeats, were able to inhibit conversion to a similar extent. Removal of the kringle V and protease domain of apo(a) strongly reduces the ability of apo(a) to inhibit conversion on HUVECs and SMCs. Removing the strong lysine binding site in KIV10 of apo(a) abolishes its ability to inhibit conversion on HUVECs and, to a lesser extent, on SMCs. These results indicate a novel mechanism in which apo(a) inhibits the positive feedback mechanism that accelerates plasmin formation on vascular cells.


Asunto(s)
Apolipoproteínas A/metabolismo , Endotelio Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fragmentos de Péptidos/metabolismo , Plasminógeno/metabolismo , Línea Celular , Fibrinolisina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos
13.
Atherosclerosis ; 275: 11-21, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29852400

RESUMEN

BACKGROUND AND AIMS: Lipoprotein(a) (Lp(a)) is a causal risk factor for cardiovascular disorders including coronary heart disease and calcific aortic valve stenosis. Apolipoprotein(a) (apo(a)), the unique glycoprotein component of Lp(a), contains sequences homologous to plasminogen. Plasminogen activation is markedly accelerated in the presence of cell surface receptors and can be inhibited in this context by apo(a). METHODS: We evaluated the role of potential receptors in regulating plasminogen activation and the ability of apo(a) to mediate inhibition of plasminogen activation on vascular and monocytic/macrophage cells through knockdown (siRNA or blocking antibodies) or overexpression of various candidate receptors. Binding assays were conducted to determine apo(a) and plasminogen receptor interactions. RESULTS: The urokinase-type plasminogen activator receptor (uPAR) modulates plasminogen activation as well as plasminogen and apo(a) binding on human umbilical vein endothelial cells (HUVECs), human acute monocytic leukemia (THP-1) cells, and THP-1 macrophages as determined through uPAR knockdown and overexpression. Apo(a) variants lacking either the kringle V or the strong lysine binding site in kringle IV type 10 are not able to bind to uPAR to the same extent as wild-type apo(a). Plasminogen activation is also modulated, albeit to a lower extent, through the Mac-1 (αMß2) integrin on HUVECs and THP-1 monocytes. Integrin αVß3 can regulate plasminogen activation on THP-1 monocytes and to a lesser extent on HUVECs. CONCLUSIONS: These results indicate cell type-specific roles for uPAR, αMß2, and αVß3 in promoting plasminogen activation and mediate the inhibitory effects of apo(a) in this process.


Asunto(s)
Apoproteína(a)/metabolismo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Integrina alfaVbeta3/metabolismo , Antígeno de Macrófago-1/metabolismo , Macrófagos/enzimología , Monocitos/enzimología , Plasminógeno/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Activación Enzimática , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Transducción de Señal , Células THP-1
14.
Crit Rev Clin Lab Sci ; 55(1): 33-54, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29262744

RESUMEN

Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Calcinosis , Enfermedad Coronaria , Lipoproteína(a)/sangre , Estenosis de la Válvula Aórtica/sangre , Estenosis de la Válvula Aórtica/tratamiento farmacológico , Estenosis de la Válvula Aórtica/epidemiología , Calcinosis/sangre , Calcinosis/tratamiento farmacológico , Calcinosis/epidemiología , Fármacos Cardiovasculares/uso terapéutico , Enfermedad Coronaria/sangre , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/epidemiología , Humanos , Oligonucleótidos Antisentido/uso terapéutico , Factores de Riesgo , Investigación Biomédica Traslacional
15.
PLoS One ; 12(7): e0180869, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28750079

RESUMEN

Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for cardiovascular disease. The mechanisms underlying Lp(a) clearance from plasma remain unclear, which is an obvious barrier to the development of therapies to specifically lower levels of this lipoprotein. Recently, it has been documented that monoclonal antibody inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) can lower plasma Lp(a) levels by 30%. Since PCSK9 acts primarily through the low density lipoprotein receptor (LDLR), this result is in conflict with the prevailing view that the LDLR does not participate in Lp(a) clearance. To support our recent findings in HepG2 cells that the LDLR can act as a bona fide receptor for Lp(a) whose effects are sensitive to PCSK9, we undertook a series of Lp(a) internalization experiments using different hepatic cells, with different variants of PCSK9, and with different members of the LDLR family. We found that PCSK9 decreased Lp(a) and/or apo(a) internalization by Huh7 human hepatoma cells and by primary mouse and human hepatocytes. Overexpression of human LDLR appeared to enhance apo(a)/Lp(a) internalization in both types of primary cells. Importantly, internalization of Lp(a) by LDLR-deficient mouse hepatocytes was not affected by PCSK9, but the effect of PCSK9 was restored upon overexpression of human LDLR. In HepG2 cells, Lp(a) internalization was decreased by gain-of-function mutants of PCSK9 more than by wild-type PCSK9, and a loss-of function variant had a reduced ability to influence Lp(a) internalization. Apo(a) internalization by HepG2 cells was not affected by apo(a) isoform size. Finally, we showed that very low density lipoprotein receptor (VLDLR), LDR-related protein (LRP)-8, and LRP-1 do not play a role in Lp(a) internalization or the effect of PCSK9 on Lp(a) internalization. Our findings are consistent with the idea that PCSK9 inhibits Lp(a) clearance through the LDLR, but do not exclude other effects of PCSK9 such as on Lp(a) biosynthesis.


Asunto(s)
Endocitosis , Lipoproteína(a)/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Animales , Apolipoproteínas A/metabolismo , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Isoformas de Proteínas/metabolismo
16.
Hepatology ; 65(6): 1851-1864, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28152568

RESUMEN

The development of different cell culture models has greatly contributed to increased understanding of the hepatitis C virus (HCV) life cycle. However, it is still challenging to grow HCV clinical isolates in cell culture. If overcome, this would open new perspectives to study HCV biology, including drug-resistant variants emerging with new antiviral therapies. In this study we hypothesized that this hurdle could be due to the presence of inhibitory factors in patient serum. Combining polyethylene glycol precipitation, iodixanol gradient, and size-exclusion chromatography, we obtained from HCV-seronegative sera a purified fraction enriched in inhibitory factors. Mass spectrometric analysis identified apolipoprotein(a) (apo[a]) as a potential inhibitor of HCV entry. Apo(a) consists of 10 kringle IV domains (KIVs), one kringle V domain, and an inactive protease domain. The 10 KIVs are present in a single copy with the exception of KIV type 2 (KIV2 ), which is encoded in a variable number of tandemly repeated copies, giving rise to numerous apo(a) size isoforms. In addition, apo(a) covalently links to the apolipoprotein B component of a low-density lipoprotein through a disulfide bridge to form lipoprotein(a). Using a recombinant virus derived from the JFH1 strain, we confirmed that plasma-derived and recombinant lipoprotein(a) as well as purified recombinant apo(a) variants were able to specifically inhibit HCV by interacting with infectious particles. Our results also suggest that small isoforms are less inhibitory than the large ones. Finally, we observed that the lipoprotein moiety of HCV lipoviroparticles was essential for inhibition, whereas functional lysine-binding sites in KIV7 , KIV8 , and KIV10 were not required. CONCLUSIONS: Our results identify apo(a) as an additional component of the lipid metabolism modulating HCV infection. (Hepatology 2017;65:1851-1864).


Asunto(s)
Hepacivirus/metabolismo , Hepatitis C/terapia , Lipoproteína(a)/farmacología , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Liquida/métodos , Hepacivirus/efectos de los fármacos , Hepatitis C/sangre , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inmunoprecipitación , Lisina/metabolismo , Unión Proteica , Sensibilidad y Especificidad , Relación Estructura-Actividad
17.
J Cell Mol Med ; 20(12): 2249-2258, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27489081

RESUMEN

The liver X receptor (LXR) is a cholesterol-sensing nuclear receptor that has an established function in lipid metabolism; however, its role in inflammation is elusive. In this study, we showed that the LXR agonist GW3965 exhibited potent anti-inflammatory activity by suppressing the firm adhesion of monocytes to endothelial cells. To further address the mechanisms underlying the inhibition of inflammatory cell infiltration, we evaluated the effects of LXR agonist on interleukin-8 (IL-8) secretion and nuclear factor-kappa B (NF-κB) activation in human umbilical vein endothelial cells (HUVECs). The LXR agonist significantly inhibited lysophosphatidylcholine (LPC)-induced IL-8 production in a dose-dependent manner without appreciable cytotoxicity. Western blotting and the NF-κB transcription activity assay showed that the LXR agonist inhibited p65 binding to the IL-8 promoter in LPC-stimulated HUVECs. Interestingly, knockdown of the indispensable small ubiquitin-like modifier (SUMO) ligases Ubc9 and Histone deacetylase 4 (HDAC4) reversed the increase in IL-8 induced by LPC. Furthermore, the LPC-induced degradation of inhibitory κBα was delayed under the conditions of deficient SUMOylation or the treatment of LXR agonist. After enhancing SUMOylation by knockdown SUMO-specific protease Sentrin-specific protease 1 (SENP1), the inhibition of GW3965 was rescued on LPC-mediated IL-8 expression. These findings indicate that LXR-mediated inflammatory gene repression correlates to the suppression of NF-κB pathway and SUMOylation. Our results suggest that LXR agonist exerts the anti-atherosclerotic role by attenuation of the NF-κB pathway in endothelial cells.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interleucina-8/metabolismo , Receptores X del Hígado/metabolismo , Lisofosfatidilcolinas/farmacología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Sumoilación/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular , Humanos , Interleucina-8/biosíntesis , Receptores X del Hígado/agonistas , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos
18.
J Lipid Res ; 56(12): 2273-85, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26474593

RESUMEN

Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.


Asunto(s)
Apolipoproteínas A/metabolismo , Apolipoproteínas/metabolismo , Interleucina-8/metabolismo , Apolipoproteínas/genética , Apolipoproteínas A/genética , Sitios de Unión , Línea Celular , Humanos , Interleucina-8/genética , FN-kappa B/metabolismo , Fosfolípidos/metabolismo , ARN Interferente Pequeño , Factor de Transcripción AP-1/metabolismo
19.
Circulation ; 132(8): 677-90, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26224810

RESUMEN

BACKGROUND: Mendelian randomization studies have highlighted that lipoprotein(a) [Lp(a)] was associated with calcific aortic valve disease (CAVD). Lp(a) transports oxidized phospholipids with a high content in lysophosphatidylcholine. Autotaxin (ATX) transforms lysophosphatidylcholine into lysophosphatidic acid. We hypothesized that ATX-lysophosphatidic acid could promote inflammation/mineralization of the aortic valve. METHODS AND RESULTS: We have documented the expression of ATX in control and mineralized aortic valves. By using different approaches, we have also investigated the role of ATX-lysophosphatidic acid in the mineralization of isolated valve interstitial cells and in a mouse model of CAVD. Enzyme-specific ATX activity was elevated by 60% in mineralized aortic valves in comparison with control valves. Immunohistochemistry studies showed a high level of ATX in mineralized aortic valves, which colocalized with oxidized phospholipids and apolipoprotein(a). We detected a high level of ATX activity in the Lp(a) fraction in circulation. Interaction between ATX and Lp(a) was confirmed by in situ proximity ligation assay. Moreover, we documented that valve interstitial cells also expressed ATX in CAVD. We showed that ATX-lysophosphatidic acid promotes the mineralization of the aortic valve through a nuclear factor κB/interleukin 6/bone morphogenetic protein pathway. In LDLR(-/-)/ApoB(100/100)/IGFII mice, ATX is overexpressed and lysophosphatidic acid promotes a strong deposition of hydroxyapatite of calcium in aortic valve leaflets and accelerates the development of CAVD. CONCLUSIONS: ATX is transported in the aortic valve by Lp(a) and is also secreted by valve interstitial cells. ATX-lysophosphatidic acid promotes inflammation and mineralization of the aortic valve and thus could represent a novel therapeutic target in CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Lipoproteína(a)/biosíntesis , Hidrolasas Diéster Fosfóricas/biosíntesis , Anciano , Animales , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Lipoproteína(a)/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad
20.
J Biol Chem ; 290(18): 11649-62, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25778403

RESUMEN

Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels.


Asunto(s)
Lipoproteína(a)/metabolismo , Proproteína Convertasas/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidasas/metabolismo , Apolipoproteínas A/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lipoproteína(a)/sangre , Proproteína Convertasa 9 , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...