Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(29): 11304-11317, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37439562

RESUMEN

The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by sulfide species (H2S/HS-) under an argon atmosphere has been studied by a combination of spectroscopic, kinetic, and computational methods. Asymmetric S-shaped time-traces for the formation of MbFeII at varying ratios of excess sulfide were observed at pH 5.3 < pH < 8.0 and 25 °C, suggesting an autocatalytic reaction mechanism. An increased rate at more alkaline pHs points to HS- as relevant reactive species for the reduction. The formation of the sulfanyl radical (HS•) in the slow initial phase was assessed using the spin-trap phenyl N-tert-butyl nitrone. This radical initiates the formation of S-S reactive species as disulfanuidyl/ disulfanudi-idyl radical anions and disulfide (HSSH•-/HSS•2- and HSS-, respectively). The autocatalysis has been ascribed to HSS-, formed after HSSH•-/HSS•2- disproportionation, which behaves as a fast reductant toward the intermediate complex MbFeIII(HS-). We propose a reaction mechanism for the sulfide-mediated reduction of metmyoglobin where only ferric heme iron initiates the oxidation of sulfide species. Beside the chemical interest, this insight into the MbFeIII/sulfide reaction under an argon atmosphere is relevant for the interpretation of biochemical aspects of ectopic myoglobins found on hypoxic tissues toward reactive sulfur species.


Asunto(s)
Sulfuro de Hidrógeno , Metamioglobina , Metamioglobina/química , Anaerobiosis , Argón , Mioglobina/química , Oxidación-Reducción , Sulfuros , Cinética
2.
ACS Catal ; 13(11): 7437-7449, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37288089

RESUMEN

Dye decolorizing peroxidases (DyP) have attracted interest for applications such as dye-containing wastewater remediation and biomass processing. So far, efforts to improve operational pH ranges, activities, and stabilities have focused on site-directed mutagenesis and directed evolution strategies. Here, we show that the performance of the DyP from Bacillus subtilis can be drastically boosted without the need for complex molecular biology procedures by simply activating the enzyme electrochemically in the absence of externally added H2O2. Under these conditions, the enzyme shows specific activities toward a variety of chemically different substrates that are significantly higher than in its canonical operation. Moreover, it presents much broader pH activity profiles with the maxima shifted toward neutral to alkaline. We also show that the enzyme can be successfully immobilized on biocompatible electrodes. When actuated electrochemically, the enzymatic electrodes have two orders of magnitude higher turnover numbers than with the standard H2O2-dependent operation and preserve about 30% of the initial electrocatalytic activity after 5 days of operation-storage cycles.

3.
J Inorg Biochem ; 245: 112256, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37244768

RESUMEN

The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by inorganic disulfide species has been studied by combined spectroscopic and kinetic analyses, under argon atmosphere. The process is kinetically characterized by biexponential time traces, for variable ratios of excess disulfide to protein, in the pH interval 6.6-8.0. Using UV-vis and resonance Raman spectroscopies, we observed that MbFeIII is converted into a low spin hexacoordinated ferric complex, tentatively assigned as MbFeIII(HSS-)/MbFeIII(SS2-), in an initial fast step. The complex is slowly converted into a pentacoordinated ferrous form, assigned as MbFeII according to the resonance Raman records. The reduction is a pH-dependent process, but independent of the initial disulfide concentration, suggesting the unimolecular decomposition of the intermediate complex following a reductive homolysis. We estimated the rate of the fast formation of the complex at pH 7.4 (kon = 3.7 × 103 M-1 s-1), and a pKa2 = 7.5 for the equilibrium MbFeIII(HSS-)/MbFeIII(SS2-). Also, we estimated the rate for the slow reduction at the same pH (kred = 10-2 s-1). A reaction mechanism compliant with the experimental results is proposed. This mechanistic study provides a differential kinetic signature for the reactions of disulfide compared to sulfide species on metmyoglobin, which may be considered in other hemeprotein systems.


Asunto(s)
Hemoproteínas , Metamioglobina , Metamioglobina/química , Metamioglobina/metabolismo , Disulfuros , Análisis Espectral , Hemoproteínas/metabolismo , Hierro , Oxidación-Reducción , Cinética
4.
Bioelectrochemistry ; 143: 107956, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34624727

RESUMEN

Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.


Asunto(s)
Citocromos c
5.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34830413

RESUMEN

This work introduces a novel way to obtain catalytically competent oxyferryl species for two different dye-decolorizing peroxidases (DyPs) in the absence of H2O2 or any other peroxide by simply applying a reductive electrochemical potential under aerobic conditions. UV-vis and resonance Raman spectroscopies show that this method yields long-lived compounds II and I for the DyPs from Bacillus subtilis (BsDyP; Class I) and Pseudomonas putida (PpDyP; Class P), respectively. Both electrochemically generated high valent intermediates are able to oxidize ABTS at both acidic and alkaline pH. Interestingly, the electrocatalytic efficiencies obtained at pH 7.6 are very similar to the values recorded for regular catalytic ABTS/H2O2 assays at the optimal pH of the enzymes, ca. 3.7. These findings pave the way for the design of DyP-based electrocatalytic reactors operable in an extended pH range without the need of harmful reagents such as H2O2.


Asunto(s)
Colorantes/química , Peroxidasas/química , Peróxidos/química , Bacillus subtilis/química , Catálisis/efectos de los fármacos , Colorantes/farmacología , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción/efectos de los fármacos , Pseudomonas putida/química , Espectrometría Raman
6.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639208

RESUMEN

Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme's overall stability by 2 kcal mol-1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Hemo/química , Mutación , Peroxidasa/química , Peroxidasa/metabolismo , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico , Colorantes/química , Colorantes/metabolismo , Estabilidad de Enzimas , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Peroxidasa/genética , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...