Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zootaxa ; 5168(1): 39-50, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-36101302

RESUMEN

A large fossil anserine-like anatid (Aves, Anatidae, Notochen bannockburnensis gen. et sp. nov.) is described based on a distal humerus from the lower Bannockburn Formation, early Miocene (1916 Ma), St Bathans Fauna from New Zealand. Its morphology and size suggest that this taxon represents an early swan rather than a goose. Extant anserines are split into Northern and Southern Hemisphere clades. The St Bathans Fauna is known to have the oldest anserines in the Southern Hemisphere, unnamed cereopsines perhaps ancestral to species of Cnemiornis (New Zealand geese). The elongate and flat morphology of the tuberculum supracondylare ventrale of the new species, however, preclude affinities with cereopsines. It is a rare taxon and the eighth anatid represented in the fauna and is the largest known anseriform from the Oligo-Miocene of Australasia. We also reassess other large anatid specimens from the St Bathans Fauna and identify Miotadorna catrionae Tennyson, Greer, Lubbe, Marx, Richards, Giovanardi Rawlence, 2022 as a junior synonym of Miotadorna sanctibathansi Worthy, Tennyson, Jones, McNamara Douglas, 2007.


Asunto(s)
Anseriformes , Fósiles , Animales , Aves/anatomía & histología , Nueva Zelanda , Filogenia
3.
Proc Biol Sci ; 287(1938): 20202318, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171079

RESUMEN

Living true seals (phocids) are the most widely dispersed semi-aquatic marine mammals, and comprise geographically separate northern (phocine) and southern (monachine) groups. Both are thought to have evolved in the North Atlantic, with only two monachine lineages-elephant seals and lobodontins-subsequently crossing the equator. The third and most basal monachine tribe, the monk seals, have hitherto been interpreted as exclusively northern and (sub)tropical throughout their entire history. Here, we describe a new species of extinct monk seal from the Pliocene of New Zealand, the first of its kind from the Southern Hemisphere, based on one of the best-preserved and richest samples of seal fossils worldwide. This unanticipated discovery reveals that all three monachine tribes once coexisted south of the equator, and forces a profound revision of their evolutionary history: rather than primarily diversifying in the North Atlantic, monachines largely evolved in the Southern Hemisphere, and from this southern cradle later reinvaded the north. Our results suggest that true seals crossed the equator over eight times in their history. Overall, they more than double the age of the north-south dichotomy characterizing living true seals and confirms a surprisingly recent major change in southern phocid diversity.


Asunto(s)
Evolución Biológica , Phocidae , Animales , Caniformia , Fósiles , Nueva Zelanda , Filogenia
4.
Proc Biol Sci ; 287(1932): 20201497, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32781949

RESUMEN

New Zealand is a globally significant hotspot for seabird diversity, but the sparse fossil record for most seabird lineages has impeded our understanding of how and when this hotspot developed. Here, we describe multiple exceptionally well-preserved specimens of a new species of penguin from tightly dated (3.36-3.06 Ma) Pliocene deposits in New Zealand. Bayesian and parsimony analyses place Eudyptes atatu sp. nov. as the sister species to all extant and recently extinct members of the crested penguin genus Eudyptes. The new species has a markedly more slender upper beak and mandible compared with other Eudyptes penguins. Our combined evidence approach reveals that deep bills evolved in both crested and stiff-tailed penguins (Pygoscelis) during the Pliocene. That deep bills arose so late in the greater than 60 million year evolutionary history of penguins suggests that dietary shifts may have occurred as wind-driven Pliocene upwelling radically restructured southern ocean ecosystems. Ancestral area reconstructions using BioGeoBEARS identify New Zealand as the most likely ancestral area for total-group penguins, crown penguins and crested penguins. Our analyses provide a timeframe for recruitment of crown penguins into the New Zealand avifauna, indicating this process began in the late Neogene and was completed via multiple waves of colonizing lineages.


Asunto(s)
Evolución Biológica , Spheniscidae/fisiología , Animales , Teorema de Bayes , Ecosistema , Fósiles , Nueva Zelanda , Filogenia
5.
Curr Biol ; 30(11): 2026-2036.e3, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32330422

RESUMEN

Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Aves/genética , Encéfalo/anatomía & histología , Animales , Tamaño de los Órganos
7.
Biol Lett ; 15(8): 20190467, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31387471

RESUMEN

Insular avifaunas have repeatedly spawned evolutionary novelties in the form of unusually large, often flightless species. We report fossils from the Early Miocene St Bathans Fauna of New Zealand that attests to the former existence of a giant psittaciform, which is described as a new genus and species. The fossils are two incomplete tibiotarsi from a bird with an estimated mass of 7 kg, double that of the heaviest known parrot, the kakapo Strigops habroptila. These psittaciform fossils show that parrots join the growing group of avian taxa prone to giantism in insular species, currently restricted to palaeognaths, anatids, sylviornithids, columbids, aptornithids, ciconiids, tytonids, falconids and accipitrids.


Asunto(s)
Loros , Animales , Evolución Biológica , Fósiles , Nueva Zelanda , Filogenia
8.
Mol Phylogenet Evol ; 134: 122-128, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30753886

RESUMEN

Prior to human arrival in the 13th century, two large birds of prey were the top predators in New Zealand. In the absence of non-volant mammals, the extinct Haast's eagle (Hieraaetus moorei), the largest eagle in the world, and the extinct Eyles' harrier (Circus teauteensis) the largest harrier in the world, had filled ecological niches that are on other landmasses occupied by animals such as large cats or canines. The evolutionary and biogeographic history of these island giants has long been a mystery. Here we reconstruct the origin and evolution of New Zealand's giant raptors using complete mitochondrial genome data. We show that both Eyles' harrier and Haast's eagle diverged from much smaller, open land adapted Australasian relatives in the late Pliocene to early Pleistocene. These events coincided with the development of open habitat in the previously densely forested islands of New Zealand. Our study provides evidence of rapid evolution of island gigantism in New Zealand's extinct birds of prey. Early Pleistocene climate and environmental changes were likely to have triggered the establishment of Australian raptors into New Zealand. Our results shed light on the evolution of two of the most impressive cases of island gigantism in the world.


Asunto(s)
Tamaño Corporal/genética , Extinción Biológica , Genoma Mitocondrial , Rapaces/anatomía & histología , Rapaces/genética , Animales , Secuencia de Bases , Teorema de Bayes , Nueva Zelanda , Filogenia
9.
Mol Phylogenet Evol ; 131: 72-79, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30367976

RESUMEN

Human impacts have substantially reduced avian biodiversity in many parts of the world, particularly on isolated islands of the Pacific Ocean. The New Zealand archipelago, including its five subantarctic island groups, holds breeding grounds for a third of the world's penguin species, including several representatives of the diverse crested penguin genus Eudyptes. While this species-rich genus has been little studied genetically, recent population estimates indicate that several Eudyptes taxa are experiencing demographic declines. Although crested penguins are currently limited to southern regions of the New Zealand archipelago, prehistoric fossil and archaeological deposits suggest a wider distribution during prehistoric times, with breeding ranges perhaps extending to the North Island. Here, we analyse ancient, historic and modern DNA sequences to explore two hypotheses regarding the recent history of Eudyptes in New Zealand, testing for (1) human-driven extinction of Eudyptes lineages; and (2) reduced genetic diversity in surviving lineages. From 83 prehistoric bone samples, each tentatively identified as 'Eudyptes spp.', we genetically identified six prehistoric penguin taxa from mainland New Zealand, including one previously undescribed genetic lineage. Moreover, our Bayesian coalescent analyses indicated that, while the range of Fiordland crested penguin (E. pachyrhynchus) may have contracted markedly over the last millennium, genetic DNA diversity within this lineage has remained relatively constant. This result contrasts with human-driven biodiversity reductions previously detected in several New Zealand coastal vertebrate taxa.


Asunto(s)
ADN Antiguo/análisis , Variación Genética , Filogenia , Spheniscidae/genética , Animales , Teorema de Bayes , Biodiversidad , Complejo IV de Transporte de Electrones/genética , Fósiles , Haplotipos/genética , Humanos , Nueva Zelanda , Océano Pacífico , Dinámica Poblacional , Spheniscidae/clasificación , Factores de Tiempo
10.
Proc Natl Acad Sci U S A ; 115(30): 7771-7776, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987016

RESUMEN

New Zealand's geographic isolation, lack of native terrestrial mammals, and Gondwanan origins make it an ideal location to study evolutionary processes. However, since the archipelago was first settled by humans 750 y ago, its unique biodiversity has been under pressure, and today an estimated 49% of the terrestrial avifauna is extinct. Current efforts to conserve the remaining fauna rely on a better understanding of the composition of past ecosystems, as well as the causes and timing of past extinctions. The exact temporal and spatial dynamics of New Zealand's extinct fauna, however, can be difficult to interpret, as only a small proportion of animals are preserved as morphologically identifiable fossils. Here, we conduct a large-scale genetic survey of subfossil bone assemblages to elucidate the impact of humans on the environment in New Zealand. By genetically identifying more than 5,000 nondiagnostic bone fragments from archaeological and paleontological sites, we reconstruct a rich faunal record of 110 species of birds, fish, reptiles, amphibians, and marine mammals. We report evidence of five whale species rarely reported from New Zealand archaeological middens and characterize extinct lineages of leiopelmatid frog (Leiopelma sp.) and kakapo (Strigops habroptilus) haplotypes lost from the gene pool. Taken together, this molecular audit of New Zealand's subfossil record not only contributes to our understanding of past biodiversity and precontact Maori subsistence practices but also provides a more nuanced snapshot of anthropogenic impacts on native fauna after first human arrival.


Asunto(s)
Biodiversidad , Huesos , ADN/genética , Fósiles , Pool de Genes , Animales , ADN/química , ADN/aislamiento & purificación , Nueva Zelanda
11.
Sci Rep ; 8(1): 235, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321543

RESUMEN

A new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia. It also underscores the significant decline in morphological diversity that has taken place in the highly distinctive, semi-terrestrial bat family Mystacinidae since the Miocene. This bat was relatively large, with an estimated body mass of ~40 g, and its dentition suggests it had an omnivorous diet. Its striking dental autapomorphies, including development of a large hypocone, signal a shift of diet compared with other mystacinids, and may provide evidence of an adaptive radiation in feeding strategy in this group of noctilionoid bats.


Asunto(s)
Biodiversidad , Quirópteros/anatomía & histología , Fósiles , Animales , Teorema de Bayes , Evolución Biológica , Quirópteros/clasificación , Quirópteros/genética , Ecología , Nueva Zelanda , Fenotipo , Filogenia
12.
Nat Commun ; 8(1): 1927, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233963

RESUMEN

One of the notable features of penguin evolution is the occurrence of very large species in the early Cenozoic, whose body size greatly exceeded that of the largest extant penguins. Here we describe a new giant species from the late Paleocene of New Zealand that documents the very early evolution of large body size in penguins. Kumimanu biceae, n. gen. et sp. is larger than all other fossil penguins that have substantial skeletal portions preserved. Several plesiomorphic features place the new species outside a clade including all post-Paleocene giant penguins. It is phylogenetically separated from giant Eocene and Oligocene penguin species by various smaller taxa, which indicates multiple origins of giant size in penguin evolution. That a penguin rivaling the largest previously known species existed in the Paleocene suggests that gigantism in penguins arose shortly after these birds became flightless divers. Our study therefore strengthens previous suggestions that the absence of very large penguins today is likely due to the Oligo-Miocene radiation of marine mammals.


Asunto(s)
Fósiles , Spheniscidae/anatomía & histología , Spheniscidae/fisiología , Animales , Evolución Biológica , Tamaño Corporal , Nueva Zelanda , Filogenia
13.
Mol Phylogenet Evol ; 115: 197-209, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28803756

RESUMEN

New Zealand's endemic King Shag (Leucocarbo carunculatus) has occupied only a narrow portion of the northeastern South Island for at least the past 240years. However, pre-human Holocene fossil and archaeological remains have suggested a far more widespread distribution of the three Leucocarbo species (King, Otago, Foveaux) on mainland New Zealand at the time of Polynesian settlement in the late 13th Century CE. We use modern and ancient DNA, and morphometric and osteological analyses, of modern King Shags and Holocene fossil Leucocarbo remains to assess the pre-human distribution and taxonomic status of the King Shag on mainland New Zealand, and the resultant conservation implications. Our analyses show that the King Shag was formerly widespread around southern coasts of the North Island and the northern parts of the South Island but experienced population and lineage extinctions, and range contraction, probably after Polynesian arrival. This history parallels range contractions of other New Zealand seabirds. Conservation management of the King Shag should take into account this species narrow distribution and probable reduced genetic diversity. Moreover, combined genetic, morphometric and osteological analyses of prehistoric material from mainland New Zealand suggest that the now extinct northern New Zealand Leucocarbo populations comprised a unique lineage. Although these distinctive populations were previously assigned to the King Shag (based on morphological similarities and geographic proximity to modern Leucocarbo populations), we herein describe them as a new species, the Kohatu Shag (Leucocarbo septentrionalis). The extinction of this species further highlights the dramatic impacts Polynesians and introduced predators had on New Zealand's coastal and marine biodiversity. The prehistoric presence of at least four species of Leucocarbo shag on mainland NZ further highlights its status as a biodiversity hotspot for Phalacrocoracidae.


Asunto(s)
Aves/clasificación , Animales , Aves/genética , Huesos/anatomía & histología , Citocromos b/clasificación , Citocromos b/genética , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Análisis Discriminante , Extinción Biológica , Fósiles/anatomía & histología , Nueva Zelanda , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN
14.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747476

RESUMEN

Prehistoric human impacts on megafaunal populations have dramatically reshaped ecosystems worldwide. However, the effects of human exploitation on smaller species, such as anatids (ducks, geese, and swans) are less clear. In this study we apply ancient DNA and osteological approaches to reassess the history of Australasia's iconic black swans (Cygnus atratus) including the palaeo-behaviour of prehistoric populations. Our study shows that at the time of human colonization, New Zealand housed a genetically, morphologically, and potentially ecologically distinct swan lineage (C. sumnerensis, Pouwa), divergent from modern (Australian) C. atratus Morphological analyses indicate C. sumnerensis exhibited classic signs of the 'island rule' effect, being larger, and likely flight-reduced compared to C. atratus Our research reveals sudden extinction and replacement events within this anatid species complex, coinciding with recent human colonization of New Zealand. This research highlights the role of anthropogenic processes in rapidly reshaping island ecosystems and raises new questions for avian conservation, ecosystem re-wilding, and de-extinction.


Asunto(s)
Anseriformes/clasificación , ADN Antiguo , Extinción Biológica , Animales , Australia , Humanos , Islas , Nueva Zelanda
15.
Zootaxa ; 4277(1): 1-16, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30308657

RESUMEN

Insular giant tortoise diversity has been depleted by Late Quaternary extinctions, but the taxonomic status of many extinct populations remains poorly understood due to limited available fossil or subfossil material, hindering our ability to reconstruct Quaternary island biotas and environments. Giant tortoises are absent from current-day insular Caribbean ecosystems, but tortoise remains from Quaternary deposits indicate the former widespread occurrence of these animals across the northern Caribbean. We report new Quaternary giant tortoise material from several cave sites in Pedernales Province, southern Dominican Republic, Hispaniola, representing at least seven individuals, which we describe as Chelonoidis marcanoi sp. nov. Although giant tortoise material was first reported from the Quaternary record of Hispaniola almost 35 years ago, tortoises are absent from most Quaternary deposits on the island, which has been studied extensively over the past century. The surprising abundance of giant tortoise remains in both vertical and horizontal caves in Hispaniola's semi-arid ecoregion may indicate that this species was adapted to open dry habitats and became restricted to a habitat refugium in southeastern Hispaniola following climatic-driven environmental change at the Pleistocene-Holocene boundary. Hispaniola's dry forest ecosystem may therefore have been shaped by giant tortoises for much of its evolutionary history.


Asunto(s)
Evolución Biológica , Tortugas , Animales , República Dominicana , Ecosistema , Fósiles
16.
Mol Phylogenet Evol ; 106: 136-143, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27677399

RESUMEN

The relationships of the extinct New Zealand ravens (Corvus spp.) are poorly understood. We sequenced the mitogenomes of the two currently recognised species and found they were sister-taxa to a clade comprising the Australian raven, little raven, and forest raven (C.coronoides, C. mellori and C. tasmanicus respectively). The divergence between the New Zealand ravens and Australian raven clade occurred in the latest Pliocene, which coincides with the onset of glacial deforestation. We also found that the divergence between the two putative New Zealand species C. antipodum and C. moriorum probably occurred in the late Pleistocene making their separation as species untenable. Consequently, we consider Corax antipodum (Forbes, 1893) to be a subspecies of Corvus moriorum Forbes, 1892. We re-examine the osteological evidence that led 19th century researchers to assign the New Zealand taxa to a separate genus, and re-assess these features in light of our new phylogenetic hypotheses. Like previous researchers, we conclude that the morphology of the palate of C. moriorum is unique among the genus Corvus, and suggest this may be an adaptation for a specialist diet.


Asunto(s)
Cuervos/clasificación , Animales , Australia , Evolución Biológica , Cuervos/genética , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Fósiles , Nueva Zelanda , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Cráneo/anatomía & histología
17.
R Soc Open Sci ; 3(8): 160258, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27853601

RESUMEN

Human settlers transported chickens (Gallus gallus domesticus) to most East Polynesian archipelagos between AD 1000 and 1300; however, it has long been assumed that New Zealand was an exception. Despite the fact that chicken bones have been recovered from localities of early archaeological middens in New Zealand, their age and genetic relationships have never been critically assessed. Here, we test the assumption that chickens were not introduced to New Zealand during prehistory through ancient DNA and radiocarbon analyses of chicken bones from sites of Maori middens containing prehistoric material. The chickens belong to the widespread mitochondrial control region haplogroup E. Radiocarbon dating reveals that the bones are not prehistoric, but are still the earliest chicken remains known from New Zealand. Two of the bones pre-date permanent European settlement (ca 1803s onwards) but overlap with the arrival of James Cook's second voyage (1773-1774), and, therefore, they are likely to be chickens, or progeny thereof, liberated during that voyage. Our results support the idea that chickens were first introduced to New Zealand by Europeans, and provide new insights into Maori uptake and integration of resources introduced during the early post-European period.

18.
Mol Ecol ; 25(16): 3950-61, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27289078

RESUMEN

While terrestrial megafaunal extinctions have been well characterized worldwide, our understanding of declines in marine megafauna remains limited. Here, we use ancient DNA analyses of prehistoric (<1450-1650 AD) sea lion specimens from New Zealand's isolated Chatham Islands to assess the demographic impacts of human settlement. These data suggest there was a large population of sea lions, unique to the Chatham Islands, at the time of Polynesian settlement. This distinct mitochondrial lineage became rapidly extinct within 200 years due to overhunting, paralleling the extirpation of a similarly large endemic mainland population. Whole mitogenomic analyses confirm substantial intraspecific diversity among prehistoric lineages. Demographic models suggest that even low harvest rates would likely have driven rapid extinction of these lineages. This study indicates that surviving Phocarctos populations are remnants of a once diverse and widespread sea lion assemblage, highlighting dramatic human impacts on endemic marine biodiversity. Our findings also suggest that Phocarctos bycatch in commercial fisheries may contribute to the ongoing population decline.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Extinción Biológica , Leones Marinos/genética , Animales , ADN Antiguo/análisis , ADN Mitocondrial/genética , Explotaciones Pesqueras , Actividades Humanas , Humanos , Islas , Nueva Zelanda
19.
Mol Phylogenet Evol ; 102: 295-304, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27261250

RESUMEN

The New Zealand acanthisittid wrens are the sister-taxon to all other "perching birds" (Passeriformes) and - including recently extinct species - represent the most diverse endemic passerine family in New Zealand. Consequently, they are important for understanding both the early evolution of Passeriformes and the New Zealand biota. However, five of the seven species have become extinct since the arrival of humans in New Zealand, complicating evolutionary analyses. The results of morphological analyses have been largely equivocal, and no comprehensive genetic analysis of Acanthisittidae has been undertaken. We present novel mitochondrial genome sequences from four acanthisittid species (three extinct, one extant), allowing us to resolve the phylogeny and revise the taxonomy of acanthisittids. Reanalysis of morphological data in light of our genetic results confirms a close relationship between the extant rifleman (Acanthisitta chloris) and an extinct Miocene wren (Kuiornis indicator), making Kuiornis a useful calibration point for molecular dating of passerines. Our molecular dating analyses reveal that the stout-legged wrens (Pachyplichas) diverged relatively recently from a more gracile (Xenicus-like) ancestor. Further, our results suggest a possible Early Oligocene origin of the basal Lyall's wren (Traversia) lineage, which would imply that Acanthisittidae survived the Oligocene marine inundation of New Zealand and therefore that the inundation was not complete.


Asunto(s)
Genoma Mitocondrial , Pájaros Cantores/clasificación , Animales , Teorema de Bayes , Evolución Biológica , Huesos/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Extinción Biológica , Nueva Zelanda , Filogenia , Análisis de Secuencia de ADN , Pájaros Cantores/genética
20.
R Soc Open Sci ; 3(2): 150635, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26998335

RESUMEN

Presbyornithids were the dominant birds in Palaeogene lacustrine assemblages, especially in the Northern Hemisphere, but are thought to have disappeared worldwide by the mid-Eocene. Now classified within Anseriformes (screamers, ducks, swans and geese), their relationships have long been obscured by their strange wader-like skeletal morphology. Reassessment of the late Oligocene South Australian material attributed to Wilaru tedfordi, long considered to be of a stone-curlew (Burhinidae, Charadriiformes), reveals that this taxon represents the first record of a presbyornithid in Australia. We also describe the larger Wilaru prideauxi sp. nov. from the early Miocene of South Australia, showing that presbyornithids survived in Australia at least until ca 22 Ma. Unlike on other continents, where presbyornithids were replaced by aquatic crown-group anatids (ducks, swans and geese), species of Wilaru lived alongside these waterfowl in Australia. The morphology of the tarsometatarsus of these species indicates that, contrary to other presbyornithids, they were predominantly terrestrial birds, which probably contributed to their long-term survival in Australia. The morphological similarity between species of Wilaru and the Eocene South American presbyornithid Telmabates antiquus supports our hypothesis of a Gondwanan radiation during the evolutionary history of the Presbyornithidae. Teviornis gobiensis from the Late Cretaceous of Mongolia is here also reassessed and confirmed as a presbyornithid. These findings underscore the temporal continuance of Australia's vertebrates and provide a new context in which the phylogeny and evolutionary history of presbyornithids can be examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...