Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(19): 8063-8075, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39372599

RESUMEN

We use ab initio modeling (CASTEP) to help elucidate the crystallization phenomena and chemistry behind kidney stone composition and formation. To explore the stone formation process, we have constructed a surface model of calcium oxalate dihydrate-the mineral most commonly found in patients with hypercalciuria and modeled stone growth, by simulating further calcium oxalate adsorption onto the surface (-7.446 eV, -0.065 eV/atom). Furthermore, urine analysis of kidney stone patients has previously revealed that their urine contains higher concentrations of phospholipids compared to healthy individuals. Therefore, to investigate the interactions between urinary macromolecules and the growing crystal surfaces at an atomic level, we have performed ab initio molecular dynamics simulations of phosphocholine adsorption on calcium oxalate surfaces. We have shown that the phosphocholine headgroups become entrapped within the growing crystal and the lowest energy structures (-18.008 eV, -0.0396 eV/atom) are those where the calcium oxalate dihydrate surfaces have become disrupted, with reorganization of their crystallographic structure. Urinary calculi (kidney stones) are a common ailment affecting around 10% of the world's population and resulting in nearly 90,000 finished consultant episodes (FCE) each year in the United Kingdom [Hospital Episode Statistics, Admitted Patient Care-England, 2011-12 NHS Digital, 2021-2022. https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/hospital-episode-statistics-admitted-patient-care-england-2011-12].

2.
Chemphyschem ; 25(19): e202400109, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38887191

RESUMEN

The paper describes an investigation of phase decomposition of apatite lattice doped with rare earth ions (cerium, samarium, and holmium) at temperatures ranging from 25-1200 °C. The rare-earth ion-doped apatite minerals were synthesized using the sol-gel method. In situ high-temperature powder X-ray diffraction (XRD) was used to observe the phase changes and the lattice parameters were analyzed to ascertain the crystallographic transformations. The expansion coefficient of the compounds was determined, and it was found that the c-axis was the most expandable due to relatively weak chemical bonds along the c-crystallographic axis. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the decomposition properties of the materials. Due to rare earth ion doping, the produced materials had slightly variable decomposition behaviour. The cerium and samarium ions were present in multiple oxidation states (Ce3+, Ce4+, Sm3+, Sm2+), whereas only Ho3+ ions were observed. Rare earth ion substitution affects tri-calcium phosphate proportion during decomposition by regulating concentrations of vacancies. X-ray photoelectron spectroscopy (XPS) analysis indicated that cerium and samarium ion-doped apatite yielded only 25 % tricalcium phosphate during decomposition. This finding advances our understanding of apatite structures, with implications for various high-temperature processes like calcination, sintering, hydrothermal processing, and plasma spraying.

3.
Cancer Metab ; 12(1): 11, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594734

RESUMEN

BACKGROUND: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT) but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. METHODS: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and our models, quantified purine synthesis using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. RESULTS: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novo synthesis and apparent lower activity of purine salvage demonstrated via stable isotope tracing of key metabolites in purine synthesis and by lower expression of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the rate-limiting enzyme of purine salvage into IMP and GMP. Inhibition of de novo guanylate synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells upregulated HGPRT expression and hypoxanthine-derived guanylate salvage but maintained high levels of guanine-derived salvage. Exogenous guanine supplementation decreased radiosensitization in cells treated with combination RT and de novo purine synthesis inhibition. Silencing HGPRT combined with RT markedly suppressed DMG-H3K27M tumor growth in vivo. CONCLUSIONS: Our results indicate that DMG-H3K27M cells rely on highly active purine synthesis, both from the de novo and salvage synthesis pathways. However, highly active salvage of free purine bases into mature guanylates can bypass inhibition of the de novo synthetic pathway. We conclude that inhibiting purine salvage may be a promising strategy to overcome treatment resistance in DMG-H3K27M tumors.

4.
Pharmaceutics ; 16(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543327

RESUMEN

Triboelectrification is a ubiquitous and poorly understood phenomenon in powder processing, particularly for pharmaceutical powders. Charged particles can adhere to vessel walls, causing sheeting; they can also cause agglomeration, threatening the stability of powder formulations, and in extreme cases electrostatic discharges, which present a serious fire and explosion hazard. Triboelectrification is highly sensitive to environmental and material conditions, which makes it very difficult to compare experimental results from different publications. In this work, density functional theory (DFT) is used to investigate the charge transfer characteristics of several functional groups of paracetamol in order to better understand the mechanisms of charging at the nanoscale and the influence of the environmental and material properties on charge transfer. This is achieved by studying the structure and electronic properties at the molecule-substrate interface. Using this molecule-substrate approach, the charging contributions of individual functional groups are explored by examining the Hirschfeld charges, the charge density difference between the molecule and substrate, the density of states, and the location of the frontier orbitals (HOMO and LUMO) of a paracetamol molecule. Charge density difference calculations indicate a significant transfer of charge from the molecule to the surface. Observable regions of electron density enrichment and depletion are evident around the electron-donating and -withdrawing groups, respectively. The density of states for the paracetamol molecule evolves as it approaches the surface, and the band gap disappears upon contact with the substrate. Hirshfeld charge analysis reveals asymmetry in the charge redistribution around the molecule, highlighting the varying charging tendencies of different atoms.

5.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902550

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Asunto(s)
Glioblastoma , Transducción de Señal , Humanos , Ratones , Animales , Transducción de Señal/genética , Reparación del ADN , Daño del ADN , Guanosina Trifosfato
6.
Microbiology (Reading) ; 169(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117289

RESUMEN

Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic Pseudomonas aeruginosa biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe3+) uptake. The therapy is a source of Ga3+, which competes with Fe3+ for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation in vivo. It was recently demonstrated that the Pseudomonas quinolone signal (PQS) can chelate Fe3+ to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)3] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against P. aeruginosa mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)3] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using 1H nuclear magnetic resonance (NMR). We demonstrate here that Ga3+ can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe3+ from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)3] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.


Asunto(s)
Galio , Pseudomonas aeruginosa , Humanos , Hierro , Sideróforos , Biopelículas , Galio/farmacología
7.
medRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961582

RESUMEN

The brain avidly consumes glucose to fuel neurophysiology. Cancers of the brain, such as glioblastoma (GBM), lose aspects of normal biology and gain the ability to proliferate and invade healthy tissue. How brain cancers rewire glucose utilization to fuel these processes is poorly understood. Here we perform infusions of 13 C-labeled glucose into patients and mice with brain cancer to define the metabolic fates of glucose-derived carbon in tumor and cortex. By combining these measurements with quantitative metabolic flux analysis, we find that human cortex funnels glucose-derived carbons towards physiologic processes including TCA cycle oxidation and neurotransmitter synthesis. In contrast, brain cancers downregulate these physiologic processes, scavenge alternative carbon sources from the environment, and instead use glucose-derived carbons to produce molecules needed for proliferation and invasion. Targeting this metabolic rewiring in mice through dietary modulation selectively alters GBM metabolism and slows tumor growth. Significance: This study is the first to directly measure biosynthetic flux in both glioma and cortical tissue in human brain cancer patients. Brain tumors rewire glucose carbon utilization away from oxidation and neurotransmitter production towards biosynthesis to fuel growth. Blocking these metabolic adaptations with dietary interventions slows brain cancer growth with minimal effects on cortical metabolism.

8.
Res Sq ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37790517

RESUMEN

Background: Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are a fatal form of brain cancer. These tumors often carry a driver mutation on histone H3 converting lysine 27 to methionine (H3K27M). DMG-H3K27M are characterized by altered metabolism and resistance to standard of care radiation (RT), but how the H3K27M mediates the metabolic response to radiation and consequent treatment resistance is uncertain. Methods: We performed metabolomics on irradiated and untreated H3K27M isogenic DMG cell lines and observed an H3K27M-specific enrichment for purine synthesis pathways. We profiled the expression of purine synthesis enzymes in publicly available patient data and in our models, quantified purine synthetic flux using stable isotope tracing, and characterized the in vitro and in vivo response to de novo and salvage purine synthesis inhibition in combination with RT. Results: DMG-H3K27M cells activate purine metabolism in an H3K27M-specific fashion. In the absence of genotoxic treatment, H3K27M-expressing cells have higher relative activity of de novosynthesis and lower activity of purine salvage due to decreased expression of the purine salvage enzymes. Inhibition of de novo synthesis radiosensitized DMG-H3K27M cells in vitro and in vivo. Irradiated H3K27M cells adaptively upregulate purine salvage enzyme expression and pathway activity. Silencing the rate limiting enzyme in purine salvage, hypoxanthine guanine phosphoribosyl transferase (HGPRT) when combined with radiation markedly suppressed DMG-H3K27M tumor growth in vivo. Conclusions: H3K27M expressing cells rely on de novo purine synthesis but adaptively upregulate purine salvage in response to RT. Inhibiting purine salvage may help overcome treatment resistance in DMG-H3K27M tumors.

9.
Cryst Growth Des ; 23(9): 6308-6317, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37692333

RESUMEN

Crystals of active pharmaceutical ingredients (API) are prone to triboelectric charging due to their dielectric nature. This characteristic, coupled with their typically low density and often large aspect ratio, poses significant challenges in the manufacturing process. The pharmaceutical industry frequently encounters issues during the secondary processing of APIs, such as particle adhesion to walls, clump formation, unreliable flow, and the need for careful handling to mitigate the risk of fire and explosions. These challenges are further intensified by the limited availability of powder quantities for testing, particularly in the early stages of drug development. Therefore, it is highly desirable to develop predictive tools that can assess the triboelectric propensity of APIs. In this study, Density Functional Theory calculations are employed to predict the effective work function of different facets of aspirin and paracetamol crystals, both in a vacuum and in the presence of water molecules on their surfaces. The calculations reveal significant variations in the work function across different facets and materials. Moreover, the adsorption of water molecules induces a shift in the work function. These findings underscore the considerable impact of distinct surface terminations and the presence of molecular water on the calculated effective work function of pharmaceuticals. Consequently, this approach offers a valuable predictive tool for determining the triboelectric propensity of APIs.

10.
PLoS One ; 18(6): e0287191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37315081

RESUMEN

Intravenous gallium therapy is a non-antibiotic approach to limit Pseudomonas aeruginosa biofilm proliferation, by outcompeting iron for siderophore binding. Gallium therapy represents a viable therapeutic strategy for cystic fibrosis (CF) patients harbouring mucoid P. aeruginosa biofilm lung infections. Siderophore deficient P. aeruginosa isolates still demonstrate a hindered biofilm proliferation when exposed to gallium but it is currently unknown whether exogenous gallium has any disruptive influence on the exopolysaccharide (EPS), the major mucoid P. aeruginosa CF lung biofilm matrix component. To that end, Density-Functional Theory (DFT) was deployed to assess whether gallium (Ga3+) could be substituted into the mature mucoid EPS scaffold in preference of calcium (Ca2+)-the native EPS cross-linking ion. Removal of the stable, bound native calcium ions offers a large enthalpic barrier to the substitution and the mature EPS fails to accommodate exogenous gallium. This suggests that gallium, perhaps, is utilising a novel, possibly unknown, ferric uptake system to gain entry to siderophore deficient cells.


Asunto(s)
Fibrosis Quística , Galio , Humanos , Pseudomonas aeruginosa , Calcio , Sideróforos/farmacología , Polisacáridos , Biopelículas , Galio/farmacología
11.
Neuro Oncol ; 25(11): 1989-2000, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37279645

RESUMEN

BACKGROUND: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance. METHODS: Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation assays and in vivo human GBM models. RESULTS: Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring of glucose metabolism and radiosensitize GBM cells in vitro and in vivo. CONCLUSIONS: These findings open the possibility that interventions designed to target cancer-specific regulators of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the radiotherapeutic outcomes in GBM patients.


Asunto(s)
Glioblastoma , Piruvato Quinasa , Humanos , Piruvato Quinasa/metabolismo , Glioblastoma/metabolismo , Antioxidantes , Isoformas de Proteínas , Glucosa/metabolismo , Línea Celular Tumoral
12.
Nat Cancer ; 4(5): 648-664, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37169842

RESUMEN

The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.


Asunto(s)
Glioblastoma , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Proteína GAP-43/metabolismo , Proteína GAP-43/uso terapéutico , Axones/metabolismo , Axones/patología , Línea Celular Tumoral , Regeneración Nerviosa , Mitocondrias/metabolismo , Mitocondrias/patología
13.
Elife ; 122023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254839

RESUMEN

Nutrient stress in the tumor microenvironment requires cancer cells to adopt adaptive metabolic programs for survival and proliferation. Therefore, knowledge of microenvironmental nutrient levels and how cancer cells cope with such nutrition is critical to understand the metabolism underpinning cancer cell biology. Previously, we performed quantitative metabolomics of the interstitial fluid (the local perfusate) of murine pancreatic ductal adenocarcinoma (PDAC) tumors to comprehensively characterize nutrient availability in the microenvironment of these tumors. Here, we develop Tumor Interstitial Fluid Medium (TIFM), a cell culture medium that contains nutrient levels representative of the PDAC microenvironment, enabling us to study PDAC metabolism ex vivo under physiological nutrient conditions. We show that PDAC cells cultured in TIFM adopt a cellular state closer to that of PDAC cells present in tumors compared to standard culture models. Further, using the TIFM model, we found arginine biosynthesis is active in PDAC and allows PDAC cells to maintain levels of this amino acid despite microenvironmental arginine depletion. We also show that myeloid derived arginase activity is largely responsible for the low levels of arginine in PDAC tumors. Altogether, these data indicate that nutrient availability in tumors is an important determinant of cancer cell metabolism and behavior, and cell culture models that incorporate physiological nutrient availability have improved fidelity to in vivo systems and enable the discovery of novel cancer metabolic phenotypes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Aminoácidos , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Arginina , Microambiente Tumoral
14.
bioRxiv ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090571

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.

15.
Antioxid Redox Signal ; 39(13-15): 942-956, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36852494

RESUMEN

Aims: Targeting tumor metabolism may improve the outcomes for patients with glioblastoma (GBM). To further preclinical efforts targeting metabolism in GBM, we tested the hypothesis that brain tumors can be stratified into distinct metabolic groups with different patient outcomes. Therefore, to determine if tumor metabolites relate to patient survival, we profiled the metabolomes of human gliomas and correlated metabolic information with clinical data. Results: We found that isocitrate dehydrogenase-wildtype (IDHwt) GBMs are metabolically distinguishable from IDH mutated (IDHmut) astrocytomas and oligodendrogliomas. Survival of patients with IDHmut gliomas was expectedly more favorable than those with IDHwt GBM, and metabolic signatures can stratify IDHwt GBMs subtypes with varying prognoses. Patients whose GBMs were enriched in amino acids had improved survival, while those whose tumors were enriched for nucleotides, redox molecules, and lipid metabolites fared more poorly. These findings were recapitulated in validation cohorts using both metabolomic and transcriptomic data. Innovation: Our results suggest the existence of metabolic subtypes of GBM with differing prognoses, and further support the concept that metabolism may drive the aggressiveness of human gliomas. Conclusions: Our data show that metabolic signatures of human gliomas can inform patient survival. These findings may be used clinically to tailor novel metabolically targeted agents for GBM patients with different metabolic phenotypes. Antioxid. Redox Signal. 39, 942-956.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Mutación , Glioma/genética , Glioma/metabolismo , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
16.
J Mol Biol ; 434(20): 167797, 2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-35998704

RESUMEN

Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.


Asunto(s)
Proteínas de la Cápside , Levivirus , Ensamble de Virus , Proteínas de la Cápside/química , Genoma Viral/genética , Levivirus/química , Levivirus/patogenicidad , Levivirus/fisiología , ARN Viral/genética , Ensamble de Virus/genética
17.
Bioorg Med Chem ; 72: 116945, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037625

RESUMEN

Chronic mucoid P. aeruginosa cystic fibrosis (CF) lung infections are associated with the development of a biofilm composed of anionic acetylated exopolysaccharide (EPS) alginate, electrostatically stabilised by extracellular Ca2+ ions. OligoG CF-5/20, a low molecular weight guluronate rich oligomer, is emerging as a novel therapeutic capable of disrupting mature P. aeruginosa biofilms. However, its method of therapeutic action on the mucoid biofilm EPS is not definitively known at a molecular level. This work, utilising molecular dynamics (MD) and Density-Functional Theory (DFT), has revealed that OligoG CF-5/20 interaction with the EPS is facilitated solely through bridging Ca2+ ions, which are not liberated from their native EPS binding sites upon OligoG CF-5/20 dispersal, suggesting that OligoG CF-5/20 does not cause disruptions to mature P. aeruginosa biofilms through breaking EPS-Ca2+-EPS ionic cross-links. Rather it is likely that the therapeutic activity arises from sequestering free Ca2+ ions and preventing further Ca2+ induced EPS aggregation.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Alginatos/química , Alginatos/metabolismo , Alginatos/farmacología , Biopelículas , Polisacáridos Bacterianos , Pseudomonas aeruginosa/metabolismo
18.
Sci Rep ; 12(1): 7724, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545629

RESUMEN

Mucoid Pseudomonas aeruginosa is a prevalent cystic fibrosis (CF) lung coloniser whose chronicity is associated with the formation of cation cross-linked exopolysaccharide (EPS) matrices, which form a biofilm that acts as a diffusion barrier, sequestering cationic and neutral antimicrobials, and making it extremely resistant to pharmacological challenge. Biofilm chronicity and virulence of the colony is regulated by quorum sensing autoinducers (QSAIs), small signalling metabolites that pass between bacteria, through the biofilm matrix, regulating genetic responses on a population-wide scale. The nature of how these molecules interact with the EPS is poorly understood, despite the fact that they must pass through EPS matrix to reach neighbouring bacteria. Interactions at the atomic-scale between two QSAI molecules, C4-HSL and PQS-both utilised by mucoid P. aeruginosa in the CF lung-and the EPS, have been studied for the first time using a combined molecular dynamics (MD) and density functional theory (DFT) approach. A large-scale, calcium cross-linked, multi-chain EPS molecular model was developed and MD used to sample modes of interaction between QSAI molecules and the EPS that occur at physiological equilibrium. The thermodynamic stability of the QSAI-EPS adducts were calculated using DFT. These simulations provide a thermodynamic rationale for the apparent free movement of C4-HSL, highlight key molecular functionality responsible for EPS binding and, based on its significantly reduced mobility, suggest PQS as a viable target for quorum quenching.


Asunto(s)
Fibrosis Quística , Percepción de Quorum , Biopelículas , Cationes/metabolismo , Fibrosis Quística/microbiología , Humanos , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/fisiología , Virulencia/genética
19.
Sci Transl Med ; 13(615): eabf7860, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644147

RESUMEN

High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrier­penetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigénesis Genética , Glioma/genética , Glicina , Histonas/metabolismo , Humanos , Ratones
20.
Cancer J ; 27(5): 386-394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34570453

RESUMEN

ABSTRACT: High-grade gliomas are among the deadliest of all cancers despite standard treatments, and new therapeutic strategies are needed to improve patient outcome. Targeting the altered metabolic state of tumors with traditional chemotherapeutic agents has a history of success, and our increased understanding of cellular metabolism in the past 2 decades has reinvigorated the concept of novel metabolic therapies in brain tumors. Here we highlight metabolic alterations in advanced gliomas and their translation into clinical trials using both novel agents and already established drugs repurposed for cancer treatment in an effort to improve outcome for these deadly diseases.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...