Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
ANZ J Surg ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104302

RESUMEN

BACKGROUND: Patients undergoing surgery deserve the best possible peri-operative outcomes. Each stage of the peri-operative patient journey offers opportunities to improve care delivery, with shorter lengths of stay, less complications, reduced costs and better value. METHODS: These opportunities were identified through narrative review of the literature, with consultation and consensus at the hidden pandemic (of postoperative complications) summit 2, July 2023 in Adelaide, Australia RESULTS: Before surgery: Some patients who receive timely alternative treatments may not need surgery at all. The period of waiting after listing should be a time of preparation. Risk assessment at the time of surgical listing facilitates recognition of need for comorbidity optimisation and identifies those who will most benefit from prehabilitation, particularly frail and deconditioned patients. DURING SURGERY: During the surgical admission, ERAS programs result in less postoperative complications, shorter length of stay and better patient experience but require agreement between clinicians, and coordinated monitoring of delivery of the elements in the ERAS bundle of care. AFTER SURGERY: At-risk patients need to have the appropriate levels of monitoring for cardiovascular instability, renal impairment or respiratory dysfunction, to facilitate timely, proactive management if they develop. Access to allied health in the early postoperative period is also critical for promoting mobility, and earlier discharge, particularly after joint surgery. Where appropriate, provision of rehabilitation services at home improves patient experience and adds value. The peri-operative patient journey begins and ends with primary care so there is a need for clear communication, documentation, around sharing of responsibility between practitioners at each stage. CONCLUSION: Identifying and mitigating risk to reduce complications and length of stay in hospital will improve outcomes for patients and deliver the best value for the health system.

2.
Sci Adv ; 10(27): eadg3747, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959314

RESUMEN

Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.


Asunto(s)
Adyuvantes Inmunológicos , Pirimidinas , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Humanos , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/metabolismo , Animales , Ratones , Adyuvantes Inmunológicos/farmacología , Receptor Toll-Like 7/agonistas , Pirimidinas/farmacología , Pirimidinas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Imidazoles/farmacología , Imidazoles/química , Células THP-1 , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , COVID-19/virología , COVID-19/inmunología , FN-kappa B/metabolismo , Femenino , Descubrimiento de Drogas/métodos , Inmunidad Innata/efectos de los fármacos
3.
Anaesthesia ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985478

RESUMEN

BACKGROUND: Peri-operative neurocognitive disorders are one of the most common complications affecting older adults after anaesthesia and surgery. It is not clear how exposure to surgery and anaesthesia contributes to the prevalence of long-term neurocognitive disorders. This study aimed to report the prevalence of neurocognitive disorders, and explore pre-operative factors associated with neurocognitive disorders 5 years after elective orthopaedic surgery. METHODS: A prospective, 5-year longitudinal, cohort study was performed recruiting patients (aged ≥ 60 y) undergoing elective orthopaedic surgery and a contemporaneous non-surgical control group. Neurocognitive disorder was evaluated and classified at baseline and 5-year review incorporating: self- and informant-reported cognition; functional participation; and performance on neuropsychological tests. RESULTS: Recruitment at 5-year follow-up included 195 patients and 21 control participants. In the patient cohort the prevalence of neurocognitive disorder was 38.1% (n = 75), with 61 (30.1%) meeting the criteria for mild neurocognitive disorder and 14 (7.1%) for major neurocognitive disorder. At 5-year follow-up, 121 (61.4%) patients were classified with a neurocognitive disorder, with 88 (44.7%) characterised with mild neurocognitive disorder and 33 (16.8%) with major neurocognitive disorder. Age (odds ratio (95%CI) 1.07 (1.02-1.13); p = 0.01) and baseline cognitive impairment (odds ratio (95%CI) 2.1 (1.06-4.15); p = 0.03) were significant predictors of neurocognitive disorder 5 years after surgery. CONCLUSION: More than half of older adult patients had some form of neurocognitive disorder 5 years after elective orthopaedic surgery. Surgery and anaesthesia may be associated with the trajectory of cognitive decline in at-risk older adults, including those with pre-operative cognitive impairment. Cognitive screening should be factored into pre-operative assessments of older adults to inform subsequent care.

4.
BMJ Open ; 14(6): e086736, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950987

RESUMEN

INTRODUCTION: Spirometry is a point-of-care lung function test that helps support the diagnosis and monitoring of chronic lung disease. The quality and interpretation accuracy of spirometry is variable in primary care. This study aims to evaluate whether artificial intelligence (AI) decision support software improves the performance of primary care clinicians in the interpretation of spirometry, against reference standard (expert interpretation). METHODS AND ANALYSIS: A parallel, two-group, statistician-blinded, randomised controlled trial of primary care clinicians in the UK, who refer for, or interpret, spirometry. People with specialist training in respiratory medicine to consultant level were excluded. A minimum target of 228 primary care clinician participants will be randomised with a 1:1 allocation to assess fifty de-identified, real-world patient spirometry sessions through an online platform either with (intervention group) or without (control group) AI decision support software report. Outcomes will cover primary care clinicians' spirometry interpretation performance including measures of technical quality assessment, spirometry pattern recognition and diagnostic prediction, compared with reference standard. Clinicians' self-rated confidence in spirometry interpretation will also be evaluated. The primary outcome is the proportion of the 50 spirometry sessions where the participant's preferred diagnosis matches the reference diagnosis. Unpaired t-tests and analysis of covariance will be used to estimate the difference in primary outcome between intervention and control groups. ETHICS AND DISSEMINATION: This study has been reviewed and given favourable opinion by Health Research Authority Wales (reference: 22/HRA/5023). Results will be submitted for publication in peer-reviewed journals, presented at relevant national and international conferences, disseminated through social media, patient and public routes and directly shared with stakeholders. TRIAL REGISTRATION NUMBER: NCT05933694.


Asunto(s)
Inteligencia Artificial , Atención Primaria de Salud , Espirometría , Humanos , Espirometría/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Programas Informáticos , Reino Unido , Sistemas de Apoyo a Decisiones Clínicas
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000090

RESUMEN

The acidic byproducts of bacteria in plaque around orthodontic brackets contribute to white spot lesion (WSL) formation. Nitric oxide (NO) has antibacterial properties, hindering biofilm formation and inhibiting the growth of oral microbes. Materials that mimic NO release could prevent oral bacteria-related pathologies. This study aims to integrate S-nitroso-acetylpenicillamine (SNAP), a promising NO donor, into orthodontic elastomeric ligatures, apply an additional polymer coating, and evaluate the NO-release kinetics and antimicrobial activity against Streptococus mutans. SNAP was added to clear elastomeric chains (8 loops, 23 mm long) at three concentrations (50, 75, 100 mg/mL, and a control). Chains were then coated, via electrospinning, with additional polymer (Elastollan®) to aid in extending the NO release. NO flux was measured daily for 30 days. Samples with 75 mg/mL SNAP + Elastollan® were tested against S. mutans for inhibition of biofilm formation on and around the chain. SNAP was successfully integrated into ligatures at each concentration. Only the 75 mg/mL SNAP chains maintained their elasticity. After polymer coating, samples exhibited a significant burst of NO on the first day, exceeding the machine's reading capacity, which gradually decreased over 29 days. Ligatures also inhibited S. mutans growth and biofilm formation. Future research will assess their mechanical properties and cytotoxicity. This study presents a novel strategy to address white spot lesion (WSL) formation and bacterial-related pathologies by utilizing nitric oxide-releasing materials. Manufactured chains with antimicrobial properties provide a promising solution for orthodontic challenges, showing significant potential for academic-industrial collaboration and commercial viability.


Asunto(s)
Biopelículas , Elastómeros , Óxido Nítrico , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/crecimiento & desarrollo , Elastómeros/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Biopelículas/efectos de los fármacos , S-Nitroso-N-Acetilpenicilamina/farmacología , S-Nitroso-N-Acetilpenicilamina/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Soportes Ortodóncicos/microbiología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/síntesis química , Humanos
6.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826238

RESUMEN

Over 95% of pancreatic ductal adenocarcinomas (PDAC) harbor oncogenic mutations in K-Ras. Upon treatment with K-Ras inhibitors, PDAC cancer cells undergo metabolic reprogramming towards an oxidative phosphorylation-dependent, drug-resistant state. However, direct inhibition of complex I is poorly tolerated in patients due to on-target induction of peripheral neuropathy. In this work, we develop molecular glue degraders against ZBTB11, a C2H2 zinc finger transcription factor that regulates the nuclear transcription of components of the mitoribosome and electron transport chain. Our ZBTB11 degraders leverage the differences in demand for biogenesis of mitochondrial components between human neurons and rapidly-dividing pancreatic cancer cells, to selectively target the K-Ras inhibitor resistant state in PDAC. Combination treatment of both K-Ras inhibitor-resistant cell lines and multidrug resistant patient-derived organoids resulted in superior anti-cancer activity compared to single agent treatment, while sparing hiPSC-derived neurons. Proteomic and stable isotope tracing studies revealed mitoribosome depletion and impairment of the TCA cycle as key events that mediate this response. Together, this work validates ZBTB11 as a vulnerability in K-Ras inhibitor-resistant PDAC and provides a suite of molecular glue degrader tool compounds to investigate its function.

7.
Cancer Res ; 84(6): 872-886, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486486

RESUMEN

Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE: Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.


Asunto(s)
Benzbromarona/análogos & derivados , Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Animales , Ratones , Humanos , Niño , Proteínas Hedgehog , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Neoplasias Cerebelosas/tratamiento farmacológico
8.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464328

RESUMEN

Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.

9.
Mol Oral Microbiol ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229003

RESUMEN

Microbial biofilms promote pathogenesis by disguising antigens, facilitating immune evasion, providing protection against antibiotics and other antimicrobials and, generally, fostering survival and persistence. Environmental fluxes are known to influence biofilm formation and composition, with recent data suggesting that tobacco and tobacco-derived stimuli are particularly important mediators of biofilm initiation and development in vitro and determinants of polymicrobial communities in vivo. The evidence for tobacco-augmented biofilm formation by oral bacteria, tobacco-induced oral dysbiosis, tobacco-resistance strategies, and bacterial physiology is summarized herein. A general overview is provided alongside specific insights gained through studies of the model and archetypal, anaerobic, Gram-negative oral pathobiont, Porphyromonas gingivalis.

10.
Nat Cancer ; 5(1): 100-113, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814011

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Asparagina/metabolismo , Línea Celular Tumoral , Asparaginasa/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Procesos Neoplásicos
11.
J Clin Periodontol ; 51(2): 222-232, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38105008

RESUMEN

AIM: The use of cannabis, which contains multiple antimicrobials, may be a risk factor for periodontitis. We hypothesized that multiple oral spirochetes would be phytocannabinoid-resistant and that cannabidiol (CBD) would act as an environmental stressor to which Treponema denticola would respond transcriptionally, thereby providing first insights into spirochetal survival strategies. MATERIALS AND METHODS: Oral spirochete growth was monitored spectrophotometrically in the presence and absence of physiologically relevant phytocannabinoid doses, the transcriptional response to phytocannabinoid exposure determined by RNAseq, specific gene activity fluxes verified using qRT-PCR and orthologues among fully sequenced oral spirochetes identified. RESULTS: Multiple strains of oral treponemes were resistant to CBD (0.1-10 µg/mL), while T. denticola ATCC 35405 was resistant to all phytocannabinoids tested (CBD, cannabinol [CBN], tetrahydrocannabinol [THC]). A total of 392 T. denticola ATCC 35405 genes were found to be CBD-responsive by RNAseq. A selected subset of these genes was independently verified by qRT-PCR. Genes found to be differentially activated by both methods included several involved in transcriptional regulation and toxin control. Suppressed genes included several involved in chemotaxis and proteolysis. CONCLUSIONS: Oral spirochetes, unlike some other periodontal bacteria, are resistant to physiological doses of phytocannabinoids. Investigation of CBD-induced transcriptomic changes provided insight into the resistance mechanisms of this important periodontal pathogen. These findings should be considered in the context of the reported enhanced susceptibility to periodontitis in cannabis users.


Asunto(s)
Cannabidiol , Periodontitis , Humanos , Cannabidiol/farmacología , Treponema denticola/genética , Treponema/genética , Spirochaetales/genética , Periodontitis/genética , Periodontitis/microbiología , Cannabinol , Perfilación de la Expresión Génica
12.
Neuron ; 111(24): 4006-4023.e10, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128479

RESUMEN

Phosphorylation of α-synuclein at the serine-129 site (α-syn Ser129P) is an established pathologic hallmark of synucleinopathies and a therapeutic target. In physiologic states, only a fraction of α-syn is phosphorylated at this site, and most studies have focused on the pathologic roles of this post-translational modification. We found that unlike wild-type (WT) α-syn, which is widely expressed throughout the brain, the overall pattern of α-syn Ser129P is restricted, suggesting intrinsic regulation. Surprisingly, preventing Ser129P blocked activity-dependent synaptic attenuation by α-syn-thought to reflect its normal function. Exploring mechanisms, we found that neuronal activity augments Ser129P, which is a trigger for protein-protein interactions that are necessary for mediating α-syn function at the synapse. AlphaFold2-driven modeling and membrane-binding simulations suggest a scenario where Ser129P induces conformational changes that facilitate interactions with binding partners. Our experiments offer a new conceptual platform for investigating the role of Ser129 in synucleinopathies, with implications for drug development.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/metabolismo , Fosforilación , Enfermedad de Parkinson/metabolismo , Serina/metabolismo
14.
PLoS Pathog ; 19(11): e1011781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976321

RESUMEN

Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.


Asunto(s)
Citomegalovirus , Herpesviridae , Humanos , Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Replicación Viral , Simplexvirus , Acrilamidas/metabolismo , Antivirales/farmacología , Antivirales/metabolismo
15.
Nat Metab ; 5(8): 1423-1439, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550596

RESUMEN

Robust and effective T cell immune surveillance and cancer immunotherapy require proper allocation of metabolic resources to sustain energetically costly processes, including growth and cytokine production. Here, we show that asparagine (Asn) restriction on CD8+ T cells exerted opposing effects during activation (early phase) and differentiation (late phase) following T cell activation. Asn restriction suppressed activation and cell cycle entry in the early phase while rapidly engaging the nuclear factor erythroid 2-related factor 2 (NRF2)-dependent stress response, conferring robust proliferation and effector function on CD8+ T cells during differentiation. Mechanistically, NRF2 activation in CD8+ T cells conferred by Asn restriction rewired the metabolic program by reducing the overall glucose and glutamine consumption but increasing intracellular nucleotides to promote proliferation. Accordingly, Asn restriction or NRF2 activation potentiated the T cell-mediated antitumoral response in preclinical animal models, suggesting that Asn restriction is a promising and clinically relevant strategy to enhance cancer immunotherapy. Our study revealed Asn as a critical metabolic node in directing the stress signaling to shape T cell metabolic fitness and effector functions.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Asparagina/metabolismo , Glucosa/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
16.
Front Neurosci ; 17: 1225191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521706

RESUMEN

Introduction: Xenon exhibits significant neuroprotection against a wide range of neurological insults in animal models. However, clinical evidence that xenon improves outcomes in human studies of neurological injury remains elusive. Previous reviews of xenon's method of action have not been performed in a systematic manner. The aim of this review is to provide a comprehensive summary of the evidence underlying the cellular interactions responsible for two phenomena associated with xenon administration: anesthesia and neuroprotection. Methods: A systematic review of the preclinical literature was carried out according to the PRISMA guidelines and a review protocol was registered with PROSPERO. The review included both in vitro models of the central nervous system and mammalian in vivo studies. The search was performed on 27th May 2022 in the following databases: Ovid Medline, Ovid Embase, Ovid Emcare, APA PsycInfo, and Web of Science. A risk of bias assessment was performed utilizing the Office of Health Assessment and Translation tool. Given the heterogeneity of the outcome data, a narrative synthesis was performed. Results: The review identified 69 articles describing 638 individual experiments in which a hypothesis was tested regarding the interaction of xenon with cellular targets including: membrane bound proteins, intracellular signaling cascades and transcription factors. Xenon has both common and subtype specific interactions with ionotropic glutamate receptors. Xenon also influences the release of inhibitory neurotransmitters and influences multiple other ligand gated and non-ligand gated membrane bound proteins. The review identified several intracellular signaling pathways and gene transcription factors that are influenced by xenon administration and might contribute to anesthesia and neuroprotection. Discussion: The nature of xenon NMDA receptor antagonism, and its range of additional cellular targets, distinguishes it from other NMDA antagonists such as ketamine and nitrous oxide. This is reflected in the distinct behavioral and electrophysiological characteristics of xenon. Xenon influences multiple overlapping cellular processes, both at the cell membrane and within the cell, that promote cell survival. It is hoped that identification of the underlying cellular targets of xenon might aid the development of potential therapeutics for neurological injury and improve the clinical utilization of xenon. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: 336871.

17.
Neurotherapeutics ; 20(4): 975-1000, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37436580

RESUMEN

As of 2022, individuals age 65 and older represent approximately 10% of the global population [1], and older adults make up more than one third of anesthesia and surgical cases in developed countries [2, 3]. With approximately > 234 million major surgical procedures performed annually worldwide [4], this suggests that > 70 million surgeries are performed on older adults across the globe each year. The most common postoperative complications seen in these older surgical patients are perioperative neurocognitive disorders including postoperative delirium, which are associated with an increased risk for mortality [5], greater economic burden [6, 7], and greater risk for developing long-term cognitive decline [8] such as Alzheimer's disease and/or related dementias (ADRD). Thus, anesthesia, surgery, and postoperative hospitalization have been viewed as a biological "stress test" for the aging brain, in which postoperative delirium indicates a failed stress test and consequent risk for later cognitive decline (see Fig. 3). Further, it has been hypothesized that interventions that prevent postoperative delirium might reduce the risk of long-term cognitive decline. Recent advances suggest that rather than waiting for the development of postoperative delirium to indicate whether a patient "passed" or "failed" this stress test, the status of the brain can be monitored in real-time via electroencephalography (EEG) in the perioperative period. Beyond the traditional intraoperative use of EEG monitoring for anesthetic titration, perioperative EEG may be a viable tool for identifying waveforms indicative of reduced brain integrity and potential risk for postoperative delirium and long-term cognitive decline. In principle, research incorporating routine perioperative EEG monitoring may provide insight into neuronal patterns of dysfunction associated with risk of postoperative delirium, long-term cognitive decline, or even specific types of aging-related neurodegenerative disease pathology. This research would accelerate our understanding of which waveforms or neuronal patterns necessitate diagnostic workup and intervention in the perioperative period, which could potentially reduce postoperative delirium and/or dementia risk. Thus, here we present recommendations for the use of perioperative EEG as a "predictor" of delirium and perioperative cognitive decline in older surgical patients.


Asunto(s)
Delirio del Despertar , Enfermedades Neurodegenerativas , Humanos , Anciano , Delirio del Despertar/epidemiología , Delirio del Despertar/prevención & control , Encéfalo/cirugía , Envejecimiento , Electroencefalografía , Unidades de Cuidados Intensivos
18.
Br J Anaesth ; 131(2): 191-193, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330310

RESUMEN

There is a potential differential effect of sevoflurane compared with propofol on postoperative delirium and other perioperative neurocognitive disorders. More generally, there are perhaps differences between volatile and intravenous anaesthetic agents in their possible impact on perioperative neurocognitive disorders. Strengths and limitations of a recent study in this journal and its contribution to our understanding of the impact of anaesthetic technique on perioperative neurocognitive disorders are discussed.


Asunto(s)
Anestésicos por Inhalación , Éteres Metílicos , Propofol , Humanos , Anestésicos por Inhalación/efectos adversos , Anestesia Intravenosa , Anestesia General/métodos , Anestésicos Intravenosos , Trastornos Neurocognitivos
19.
ANZ J Surg ; 93(11): 2621-2625, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37138508

RESUMEN

BACKGROUND: Anaphylaxis is a severe, potentially life-threatening generalized or systemic hypersensitivity reaction. Sequential reports have cited anaphylaxis as the most common cause of anaesthesia-related deaths. We undertook an audit at a quaternary centre, examining the management of perioperative anaphylaxis and quality of referrals made to our anaesthesia allergy testing service. METHODS: The data of 41 patients consulted at St Vincent's Hospital Melbourne for perioperative anaphylaxis between 17th of January 2020 and 20th of January 2022 were analysed. Intervention outcomes included total intravenous fluid administered, adrenaline administration, instigation of CPR and the collection and the timing of serum tryptase samples. We also assessed referral quality, provision of institutional allergy alert and time elapsed from the anaphylaxis event to allergy testing. Contemporaneous Australian and New Zealand Anaesthetic Allergy Group (ANZAAG) guidelines were used as the reference standard for most outcomes. RESULTS: Our data reveals compliance of <80% with respect to intravenous fluid administration, referral quality and tryptase sampling, particularly at the 4-h timepoint. CONCLUSION: Surgical leadership and patient advocacy in the post-acute phase would likely facilitate requisite testing and improve the quality of counselling. We recommend institutions adopt a case-by-case review of management compliance with recommendations. Additionally, we advocate for the inclusion of a prompt to the ANZAAG referral form, that encourages the operator to update their patient's institutional allergy alert while awaiting allergy testing.


Asunto(s)
Anafilaxia , Hipersensibilidad a las Drogas , Humanos , Anafilaxia/diagnóstico , Anafilaxia/terapia , Anafilaxia/complicaciones , Hipersensibilidad a las Drogas/etiología , Triptasas , Australia/epidemiología , Epinefrina
20.
Proc Natl Acad Sci U S A ; 120(3): e2218332120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626549

RESUMEN

O-GlcNAc transferase (OGT) modifies serine and threonine residues on nuclear and cytosolic proteins with O-linked N-acetylglucosamine (GlcNAc). OGT is essential for mammalian cell viability, but the underlying mechanisms are still enigmatic. We performed a genome-wide CRISPR-Cas9 screen in mouse embryonic stem cells (mESCs) to identify candidates whose depletion rescued the block in cell proliferation induced by OGT deficiency. We show that the block in cell proliferation in OGT-deficient cells stems from mitochondrial dysfunction secondary to mTOR (mechanistic target of rapamycin) hyperactivation. In normal cells, OGT maintains low mTOR activity and mitochondrial fitness through suppression of proteasome activity; in the absence of OGT, increased proteasome activity results in increased steady-state amino acid levels, which in turn promote mTOR lysosomal translocation and activation, and increased oxidative phosphorylation. mTOR activation in OGT-deficient mESCs was confirmed by an independent phospho-proteomic screen. Our study highlights a unique series of events whereby OGT regulates the proteasome/ mTOR/ mitochondrial axis in a manner that maintains homeostasis of intracellular amino acid levels, mitochondrial fitness, and cell viability. A similar mechanism operates in CD8+ T cells, indicating its generality across mammalian cell types. Manipulating OGT activity may have therapeutic potential in diseases in which this signaling pathway is impaired.


Asunto(s)
Linfocitos T CD8-positivos , Complejo de la Endopetidasa Proteasomal , Animales , Ratones , Acetilglucosamina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Supervivencia Celular , Mitocondrias/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...