Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neuroinform ; 12: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593519

RESUMEN

The diversity of intrinsic dynamics observed in neurons may enhance the computations implemented in the circuit by enriching network-level emergent properties such as synchronization and phase locking. Large-scale spiking network models of entire brain regions offer a platform to test theories of neural computation and cognitive function, providing useful insights on information processing in the nervous system. However, a systematic in-depth investigation requires network simulations to capture the biological intrinsic diversity of individual neurons at a sufficient level of accuracy. The computationally efficient Izhikevich model can reproduce a wide range of neuronal behaviors qualitatively. Previous studies using optimization techniques, however, were less successful in quantitatively matching experimentally recorded voltage traces. In this article, we present an automated pipeline based on evolutionary algorithms to quantitatively reproduce features of various classes of neuronal spike patterns using the Izhikevich model. Employing experimental data from Hippocampome.org, a comprehensive knowledgebase of neuron types in the rodent hippocampus, we demonstrate that our approach reliably fit Izhikevich models to nine distinct classes of experimentally recorded spike patterns, including delayed spiking, spiking with adaptation, stuttering, and bursting. Importantly, by leveraging the parameter-exploration capabilities of evolutionary algorithms, and by representing qualitative spike pattern class definitions in the error landscape, our approach creates several suitable models for each neuron type, exhibiting appropriate feature variabilities among neurons. Moreover, we demonstrate the flexibility of our methodology by creating multi-compartment Izhikevich models for each neuron type in addition to single-point versions. Although the results presented here focus on hippocampal neuron types, the same strategy is broadly applicable to any neural systems.

2.
Prog Biophys Mol Biol ; 113(1): 108-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23567156

RESUMEN

The phenomenon of preadaptation, or exaptation (wherein a trait that originally evolved to solve one problem is co-opted to solve a new problem) presents a formidable challenge to efforts to describe biological phenomena using a classical (Kolmogorovian) mathematical framework. We develop a quantum framework for exaptation with examples from both biological and cultural evolution. The state of a trait is written as a linear superposition of a set of basis states, or possible forms the trait could evolve into, in a complex Hilbert space. These basis states are represented by mutually orthogonal unit vectors, each weighted by an amplitude term. The choice of possible forms (basis states) depends on the adaptive function of interest (e.g., ability to metabolize lactose or thermoregulate), which plays the role of the observable. Observables are represented by self-adjoint operators on the Hilbert space. The possible forms (basis states) corresponding to this adaptive function (observable) are called eigenstates. The framework incorporates key features of exaptation: potentiality, contextuality, nonseparability, and emergence of new features. However, since it requires that one enumerate all possible contexts, its predictive value is limited, consistent with the assertion that there exists no biological equivalent to "laws of motion" by which we can predict the evolution of the biosphere.


Asunto(s)
Evolución Biológica , Biofisica/métodos , Simulación por Computador , Modelos Biológicos , Biología Molecular/métodos , Teoría Cuántica , Biología de Sistemas/métodos , Algoritmos , Matemática , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...