Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 140(3): 107656, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37517328

RESUMEN

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive disorder due to pathological variants of NPC1. The NPC1 phenotype is characterized by progressive cerebellar ataxia and cognitive impairment. Although classically a childhood/adolescent disease, NPC1 is heterogeneous with respect to the age of onset of neurological signs and symptoms. While miglustat has shown to be clinically effective, there are currently no FDA approved drugs to treat NPC1. Identification and characterization of biomarkers may provide tools to facilitate therapeutic trials. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is a protein which is highly expressed by neurons and is a biomarker of neuronal damage. We thus measured cerebrospinal fluid (CSF) levels of UCHL1 in individuals with NPC1. METHODS: CSF levels of UCHL1 were measured using a Quanterix Neuroplex 4 assay in 94 individuals with NPC1 and 35 age-appropriate comparison samples. Cross-sectional and longitudinal CSF UCHL1 levels were then evaluated for correlation with phenotypic measures and treatment status. RESULTS: CSF UCHL1 levels were markedly elevated (3.3-fold) in individuals with NPC1 relative to comparison samples. The CSF UCHL1 levels showed statistically significant (adj p < 0.0001), moderate, positive correlations with both the 17- and 5-domain NPC Neurological Severity Scores and the Annual Severity Increment Scores. Miglustat treatment significantly decreased (adj p < 0.0001) CSF UCHL1 levels by 30% (95% CI 17-40%). CONCLUSIONS: CSF UCHL1 levels are elevated in NPC1, increase with increasing clinical severity and decrease in response to therapy with miglustat. Based on these data, UCHL1 may be a useful biomarker to monitor disease progression and therapeutic response in individuals with NPC1.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Adolescente , Niño , Humanos , Biomarcadores/metabolismo , Estudios Transversales , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Fenotipo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/uso terapéutico
2.
Biomark Res ; 11(1): 14, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721240

RESUMEN

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive, lethal, lysosomal disease characterized by progressive cerebellar ataxia and cognitive impairment. Although the NPC1 phenotype is heterogeneous with variable age of onset, classical NPC1 is a pediatric disorder. Currently there are no therapies approved by the FDA and therapeutics trials for NPC1 are complicated by disease rarity, heterogeneity, and the relatively slow rate of neurological decline. Thus, identification of disease relevant biomarkers is necessary to provide tools that can support drug development efforts for this devastating neurological disease. METHODS: Proximal extension assays (O-link® Explore 1536) were used to compare cerebrospinal fluid (CSF) samples from individuals with NPC1 enrolled in a natural history study and non-NPC1 comparison samples. Relative expression levels of 1467 proteins were determined, and candidate protein biomarkers were identified by evaluating fold-change and adjusted Kruskal-Wallis test p-values. Selected proteins were orthogonally confirmed using ELISA. To gain insight into disease progression and severity we evaluated the altered protein expression with respect to clinically relevant phenotypic aspects: NPC Neurological Severity Score (NPC1 NSS), Annual Severity Increment Score (ASIS) and age of neurological onset. RESULTS: This study identified multiple proteins with altered levels in CSF from individuals with NPC1 compared to non-NPC1 samples. These included proteins previously shown to be elevated in NPC1 (NEFL, MAPT, CHIT1, CALB1) and additional proteins confirmed by orthogonal assays (PARK7, CALB2/calretinin, CHI3L1/YKL-40, MIF, CCL18 and ENO2). Correlations with clinically relevant phenotypic parameters demonstrated moderate negative (p = 0.0210, r = -0.41) and possible moderate positive (p = 0.0631, r = 0.33) correlation of CSF CALB2 levels with age of neurological onset and ASIS, respectively. CSF CHI3L1 levels showed a moderate positive (p = 0.0183, r = 0.40) correlation with the concurrent NPC1 NSS. A strong negative correlation (p = 0.0016, r = -0.648) was observed between CSF CCL18 and age of neurological onset for childhood/adolescent cases. CSF CCL18 levels also showed a strong positive correlation (p = 0.0017, r = 0.61) with ASIS. CONCLUSION: Our study identified and validated multiple proteins in CSF from individuals with NPC1 that are candidates for further investigation in a larger cohort. These analytes may prove to be useful as supportive data in therapeutic trials. TRIAL REGISTRATIONS: NCT00344331, NCT00001721, NCT02931682.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...