Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 479: 37-50, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303700

RESUMEN

Ventral spinal cord progenitor cells, which express the basic helix loop helix transcription factor Olig2, sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Following specification some OPCs differentiate as myelinating oligodendrocytes while others persist as OPCs. Though a considerable amount of work has described the molecular profiles that define motor neurons, OPCs, and oligodendrocytes, less is known about the progenitors that produce them. To identify the developmental origins and transcriptional profiles of motor neurons and OPCs, we performed single-cell RNA sequencing on isolated pMN cells from embryonic zebrafish trunk tissue at stages that encompassed motor neurogenesis, OPC specification, and initiation of oligodendrocyte differentiation. Downstream analyses revealed two distinct pMN progenitor populations: one that appears to produce neurons and one that appears to produce OPCs. This latter population, called Pre-OPCs, is marked by expression of GS Homeobox 2 (gsx2), a gene that encodes a homeobox transcription factor. Using fluorescent in situ hybridizations, we identified gsx2-expressing Pre-OPCs in the spinal cord prior to expression of canonical OPC marker genes. Our data therefore reveal heterogeneous gene expression profiles among pMN progenitors, supporting prior fate mapping evidence.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Médula Espinal/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Oligodendroglía/citología , Análisis de la Célula Individual/métodos , Análisis Espacio-Temporal , Factores de Transcripción/metabolismo , Transcriptoma/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
2.
Glia ; 69(10): 2349-2361, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110049

RESUMEN

Neurodevelopment requires the precise integration of a wide variety of neuronal and glial cell types. During early embryonic development, motor neurons and then oligodendrocyte precursor cells (OPCs) are specified from neural progenitors residing in the periventricular pMN progenitor domain of the spinal cord. Following gliogenesis, OPCs can differentiate as oligodendrocytes (OLs)-the myelinating glial cells of the central nervous system-or remain as OPCs. To generate unique cell types capable of highly divergent functions, these specification and differentiation events require specialized gene expression programs. RNA binding proteins (RBPs) regulate mRNA localization and translation in the developing nervous system and are linked to many neurodevelopmental disorders. One example is Fragile X syndrome (FXS), caused by the loss of the RBP fragile X mental retardation protein (FMRP). Importantly, infants with FXS have reduced white matter and we previously showed that zebrafish Fmrp is autonomously required in OLs to promote myelin sheath growth. We now find that Fmrp regulates cell specification in pMN progenitor cells such that fmr1 mutant zebrafish generate fewer motor neurons and excess OPCs. Fmrp subsequently promotes differentiation of OPCs, leading to fewer differentiating OLs in the developing spinal cord of fmr1 larvae. Although the early patterning of spinal progenitor domains appears largely normal in fmr1 mutants during early embryogenesis, Shh signaling is greatly diminished. Taken together, these results suggest cell stage-specific requirements for Fmrp in the specification and differentiation of oligodendrocyte lineage cells.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Proteínas de Unión al ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas Motoras/metabolismo , Oligodendroglía/metabolismo , Embarazo , Pez Cebra/metabolismo
3.
Genetics ; 218(4)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34057474

RESUMEN

The axis of the vertebrate neural tube is patterned, in part, by a ventral to dorsal gradient of Shh signaling. In the ventral spinal cord, Shh induces concentration-dependent expression of transcription factors, subdividing neural progenitors into distinct domains that subsequently produce distinct neuronal and glial subtypes. In particular, progenitors of the pMN domain express the bHLH transcription factor Olig2 and produce motor neurons followed by oligodendrocytes, the myelinating glial cell type of the central nervous system. In addition to its role in patterning ventral progenitors, Shh signaling must be maintained through development to specify pMN progenitors for oligodendrocyte fate. Using a forward genetic screen in zebrafish for mutations that disrupt the development of oligodendrocytes, we identified a new mutant allele of boc, which encodes a type I transmembrane protein that functions as a coreceptor for Shh. Embryos homozygous for the bocco25 allele, which creates a missense mutation in a Fibronectin type III domain that binds Shh, have normally patterned spinal cords but fail to maintain pMN progenitors, resulting in a deficit of oligodendrocytes. Using a sensitive fluorescent detection method for in situ RNA hybridization, we found that spinal cord cells express boc in a graded fashion that is inverse to the gradient of Shh signaling activity and that boc function is necessary to maintain pMN progenitors by shaping the Shh signaling gradient.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis , Oligodendroglía/metabolismo , Médula Espinal/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Moléculas de Adhesión de Célula Nerviosa/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Médula Espinal/citología , Médula Espinal/embriología , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Development ; 147(16)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32680935

RESUMEN

Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8, which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Hedgehog/metabolismo , Histona Metiltransferasas/metabolismo , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Animales , Proteínas de Unión al ADN/genética , Proteínas Hedgehog/genética , Histona Metiltransferasas/genética , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Células-Madre Neurales/citología , Oligodendroglía/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...