Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16307, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009626

RESUMEN

The frequency of unprovoked shark bites is increasing worldwide, leading to a growing pressure for mitigation measures to reduce shark-bite risk while maintaining conservation objectives. Personal shark deterrents are a promising and non-lethal strategy that can protect ocean users, but few have been independently and scientifically tested. In Australia, bull (Carcharhinus leucas), tiger (Galeocerdo cuvier), and white sharks (Carcharodon carcharias) are responsible for the highest number of bites and fatalities. We tested the effects of two electric deterrents (Ocean Guardian's Freedom+ Surf and Freedom7) on the behaviour of these three species. The surf product reduced the probability of bites by 54% across all three species. The diving product had a similar effect on tiger shark bites (69% reduction) but did not reduce the frequency of bites from white sharks (1% increase), likely because the electrodes were placed further away from the bait. Electric deterrents also increased the time for bites to occur, and frequency of reactions and passes for all species tested. Our findings reveal that both Freedom+ Surf and Freedom7 electric deterrents affect shark behaviour and can reduce shark-bite risk for water users, but neither product eliminated the risk of shark bites entirely. The increasing number of studies showing the ability of personal electric deterrents to reduce shark-bite risk highlights personal protection as an effective and important part of the toolbox of shark-bite mitigation measures.


Asunto(s)
Mordeduras y Picaduras , Tiburones , Animales , Tiburones/fisiología , Mordeduras y Picaduras/prevención & control , Australia , Conservación de los Recursos Naturales/métodos , Humanos , Electricidad
2.
Mov Ecol ; 12(1): 31, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654348

RESUMEN

BACKGROUND: Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. METHODS: Since 2007, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. RESULTS: The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore "redundancy" is a critical consideration when designing this type of array. CONCLUSION: Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.

3.
Biology (Basel) ; 11(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36358255

RESUMEN

Drones enable the monitoring for sharks in real-time, enhancing the safety of ocean users with minimal impact on marine life. Yet, the effectiveness of drones for detecting sharks (especially potentially dangerous sharks; i.e., white shark, tiger shark, bull shark) has not yet been tested at Queensland beaches. To determine effectiveness, it is necessary to understand how environmental and operational factors affect the ability of drones to detect sharks. To assess this, we utilised data from the Queensland SharkSmart drone trial, which operated at five southeast Queensland beaches for 12 months in 2020−2021. The trial conducted 3369 flights, covering 1348 km and sighting 174 sharks (48 of which were >2 m in length). Of these, eight bull sharks and one white shark were detected, leading to four beach evacuations. The shark sighting rate was 3% when averaged across all beaches, with North Stradbroke Island (NSI) having the highest sighting rate (17.9%) and Coolum North the lowest (0%). Drone pilots were able to differentiate between key shark species, including white, bull and whaler sharks, and estimate total length of the sharks. Statistical analysis indicated that location, the sighting of other fauna, season and flight number (proxy for time of day) influenced the probability of sighting sharks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...