Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507426

RESUMEN

Sox2 is known for its roles in maintaining the stem cell state of embryonic stem cells and neural stem cells. In particular, it has been shown to slow the proliferation of these cell types. It is also known for its effects as an activating transcription factor. Despite this, analysis of published studies shows that it represses as many genes as it activates. Here, we identify a new set of target genes that Sox2 represses in neural stem cells. These genes are associated with centrosomes, centromeres and other aspects of cell cycle control. In addition, we show that SUMOylation of Sox2 is necessary for the repression of these genes and for its repressive effects on cell proliferation. Together, these data suggest that SUMO-dependent repression of this group of target genes is responsible for the role of Sox2 in regulating the proliferation of neural stem cells.


Asunto(s)
Células-Madre Neurales , Células-Madre Neurales/metabolismo , Transcripción Genética , Células Madre Embrionarias , Regulación del Desarrollo de la Expresión Génica , Proliferación Celular , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Diferenciación Celular/genética
2.
Sci Rep ; 11(1): 4259, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608621

RESUMEN

Studying medulloblastoma, the most common malignant paediatric brain tumour, requires simple yet realistic in vitro models. In this study, we optimised a robust, reliable, three-dimensional (3D) culture method for medulloblastoma able to recapitulate the spatial conformation, cell-cell and cell-matrix interactions that exist in vivo and in patient tumours. We show that, when grown under the same stem cell enriching conditions, SHH subgroup medulloblastoma cell lines established tight, highly reproducible 3D spheroids that could be maintained for weeks in culture and formed pathophysiological oxygen gradients. 3D spheroid culture also increased resistance to standard-of-care chemotherapeutic drugs compared to 2D monolayer culture. We exemplify how this model can enhance in vitro therapeutic screening approaches through dual-inhibitor studies and continual monitoring of drug response. Next, we investigated the initial stages of metastatic dissemination using brain-specific hyaluronan hydrogel matrices. RNA sequencing revealed downregulation of cell cycle genes and upregulation of cell movement genes and key fibronectin interactions in migrating cells. Analyses of these upregulated genes in patients showed that their expression correlated with early relapse and overall poor prognosis. Our 3D spheroid model is a significant improvement over current in vitro techniques, providing the medulloblastoma research community with a well-characterised and functionally relevant culture method.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Biomarcadores de Tumor , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/etiología , Meduloblastoma/mortalidad , Pronóstico , Células Tumorales Cultivadas
3.
NPJ Genom Med ; 1: 15009, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29263807

RESUMEN

Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

4.
BMC Neurosci ; 15: 95, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25103589

RESUMEN

BACKGROUND: The transcription factor, Sox2, is central to the behaviour of neural stem cells. It is also one of the key embryonic stem cell factors that, when overexpressed can convert somatic cells into induced pluripotent cells. Although generally studied as a transcriptional activator, recent evidence suggests that it might also repress gene expression. RESULTS: We show that in neural stem cells Sox2 represses as many genes as it activates. We found that Sox2 interacts directly with members of the groucho family of corepressors and that repression of several target genes required this interaction. Strikingly, where many of the genes activated by Sox2 encode transcriptional regulators, no such genes were repressed. Finally, we found that a mutant form of Sox2 that was unable to bind groucho was no longer able to inhibit differentiation of neural stem cells to the same extent as the wild type protein. CONCLUSIONS: These data reveal a major new mechanism of action for this key transcription factor. In the context of our understanding of endogenous stem cells, this highlights the need to determine how such a central regulator can distinguish which genes to activate and which to repress.


Asunto(s)
Células-Madre Neurales/fisiología , Factores de Transcripción SOXB1/metabolismo , Transcripción Genética/fisiología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Humanos , Ratones , Análisis por Micromatrices , Mutación , Neurogénesis/fisiología , Factores de Transcripción SOXB1/genética , Transfección
5.
PLoS One ; 8(2): e57698, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469052

RESUMEN

The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation, but its role remains to be fully elucidated. In order to better understand how Fgf signaling fits into the complex regulatory network that determines when and where the organizer forms, the relationship between the positive effects of Fgf signaling and the repressive effects of the SoxB1 factors must be resolved. This study demonstrates that both fgf3 and fgf8 are required for expression of the organizer genes, gsc and chd, and that SoxB1 factors (Sox3, and the zebrafish specific factors, Sox19a and Sox19b) can repress the expression of both fgf3 and fgf8. However, we also find that these SoxB1 factors inhibit the expression of gsc and chd independently of their repression of fgf expression. We show that ectopic expression of organizer genes induced solely by the inhibition of SoxB1 function is dependent upon the activation of fgf expression. These data allow us to describe a comprehensive signaling network in which the SoxB1 factors restrict organizer formation by inhibiting Fgf, Nodal and Wnt signaling, as well as independently repressing the targets of that signaling. The organizer therefore forms only where Nodal-induced Fgf signaling overlaps with Wnt signaling and the SoxB1 proteins are absent.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Organizadores Embrionarios/citología , Organizadores Embrionarios/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Animales , Secuencia Conservada , Evolución Molecular , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Regiones Promotoras Genéticas/genética
6.
PLoS One ; 8(1): e54262, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342113

RESUMEN

Akt1 is well known for its role in regulating cell proliferation, differentiation, and apoptosis and is implicated in tumors and several neurological disorders. However, the role of Akt1 in neural development has not been well defined. We have isolated zebrafish akt1 and shown that this gene is primarily transcribed in the developing nervous system, and its spatiotemporal expression pattern suggests a role in neural differentiation. Injection of akt1 morpholinos resulted in loss of neuronal precursors with a concomitant increase in post-mitotic neurons, indicating that knockdown of Akt1 is sufficient to cause premature differentiation of neurons. A similar phenotype was observed in embryos deficient for Notch signaling. Both the ligand (deltaA) and the downstream target of Notch (her8a) were downregulated in akt1 morphants, indicating that Akt1 is required for Delta-Notch signaling. Furthermore, akt1 expression was downregulated in Delta-Notch signaling-deficient embryos and could be induced by constitutive activation of Notch signaling. In addition, knockdown of Akt1 was able to nullify the inhibition of neuronal differentiation caused by constitutive activation of Notch signaling. Taken together, these results provide in vivo evidence that Akt1 interacts with Notch signaling reciprocally and provide an explanation of why Akt1 is essential for the inhibition of neuronal differentiation.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Receptores Notch/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
7.
J Pathol ; 229(1): 4-11, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22926997

RESUMEN

Germ cell tumours found in the brain (intracranial GCTs) are a very unusual class of tumour for two reasons. First, they include a very diverse range of histological subtypes classified together due to their proposed common cell of origin. Second, this proposed cell of origin, the germ cell progenitor, would not normally be found in the tissue where these tumours arise. This is in contrast to all other primary brain tumours, in which the cell of origin is believed to be a brain cell. Indeed, no other class of primary cancer arises from a cell from a distant organ. This theory for the origins of intracranial GCTs has been in place for many decades, but recent data arising from studies of induced pluripotency for regenerative medicine raise serious questions about this dogma. Here we review the cellular origins of intracranial GCTs in the light of these new data and reanalyse the existing data on the biology of this unusual class of tumours. Together, these considerations lead us to conclude that the evidence now falls in favour of a model in which these tumours arise from the transformation of endogenous brain cells. This theory should inform future studies of the aetiology of these tumours and so lead the way to animal models in which to study their development and potential biological therapeutics.


Asunto(s)
Neoplasias Encefálicas/patología , Linaje de la Célula , Neoplasias de Células Germinales y Embrionarias/patología , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Células Madre Pluripotentes/patología , Investigación con Células Madre , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linaje de la Célula/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo
8.
Cell Mol Life Sci ; 70(5): 935-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23052218

RESUMEN

The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.


Asunto(s)
Axones/metabolismo , Axones/patología , Neuronas/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas RGS/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Neurogénesis , Neuronas/metabolismo , Neuronas/patología , Filogenia , Proteínas RGS/química , Proteínas RGS/genética , Alineación de Secuencia , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética
9.
Development ; 139(13): 2288-98, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22669820

RESUMEN

The transcription factors Nanog and Oct4 regulate pluripotency in the pre-implantation epiblast and in derivative embryonic stem cells. During post-implantation development, the precise timing and mechanism of the loss of pluripotency is unknown. Here, we show that in the mouse, pluripotency is extinguished at the onset of somitogenesis, coincident with reduced expression and chromatin accessibility of Oct4 and Nanog regulatory regions. Prior to somitogenesis expression of both Nanog and Oct4 is regionalized. We show that pluripotency tracks the in vivo level of Oct4 and not Nanog by assessing the ability to reactivate or maintain Nanog expression in cell culture. Enforced Oct4 expression in somitogenesis-stage tissue provokes rapid reopening of Oct4 and Nanog chromatin, Nanog re-expression and resuscitates moribund pluripotency. Our data suggest that decreasing Oct4 expression is converted to a sudden drop in competence to maintain pluripotency gene regulatory network activity that is subsequently stabilized by epigenetic locks.


Asunto(s)
Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Proteína Homeótica Nanog
10.
PLoS One ; 6(4): e19394, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21541299

RESUMEN

Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Oligonucleótidos Antisentido/farmacología , Fenotipo , Filogenia , Receptor Notch1/química , Receptor Notch1/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
11.
J Neurooncol ; 101(3): 419-28, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20582452

RESUMEN

Germ cell tumours (GCTs) are a diverse group of neoplasms all of which are generally believed to arise from germ cell progenitors (PGCs). Even those that form in the nervous system are likewise believed to be PGC-derived, despite being found a great distance from the normal location of germ cells. The primary evidence in favour of this model for the origins of intracranial GCTs is that they share molecular features with other GCTs. Those features include shared gene expression and a lack of methylation of imprinted genes, including SNRPN. Contrary to this model, we have proposed that endogenous neural stem cells of the brain are a more likely origin for these tumours. We show here that the lack of methylation of SNRPN that has previously been taken to indicate an origin for GCTs from PGCs is also seen in neural stem cells of mice and humans. We believe that, in the light of these and other recent observations, endogenous neural precursors of the brain are a more plausible origin for intracranial GCTs than are misplaced PGCs.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN , Neoplasias de Células Germinales y Embrionarias/genética , Células-Madre Neurales/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Testiculares/metabolismo , Proteínas Nucleares snRNP/genética , Adolescente , Adulto , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Impresión Genómica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias de Células Germinales y Embrionarias/patología , Células-Madre Neurales/patología , Neoplasias Ováricas/patología , Pronóstico , Neoplasias Testiculares/patología , Adulto Joven
12.
J Anat ; 217(3): 203-13, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20646110

RESUMEN

Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.


Asunto(s)
Encéfalo/embriología , Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Células Madre Pluripotentes/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Metilación de ADN , Expresión Génica , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
13.
Development ; 137(16): 2671-81, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20610482

RESUMEN

Formation of the organizer is one of the most central patterning events in vertebrate development. Organizer-derived signals are responsible for establishing the CNS and patterning the dorsal ventral axis. The mechanisms promoting organizer formation are known to involve cooperation between Nodal and Wnt signalling. However, the organizer forms in a very restricted region, suggesting the presence of mechanisms that repress its formation. Here, we show in zebrafish that the transcription factor Sox3 represses multiple steps in the signalling events that lead to organizer formation. Although beta-catenin, Bozozok and Squint are known to play major roles in establishing the dorsal organizer in vertebrate embryos, overexpression of any of these is insufficient to induce robust expression of markers of the organizer in ectopic positions in the animal pole, where Sox3 is strongly expressed. We show that a dominant-negative nuclear localisation mutant of Sox3 can cause ectopic expression of organizer genes via a mechanism that activates all of these earlier factors, resulting in later axis duplication including major bifurcations of the CNS. We also find that the related SoxB1 factor, Sox19b, can act redundantly with Sox3 in these effects. It therefore seems that the broad expression of these SoxB1 genes throughout the early epiblast and their subsequent restriction to the ectoderm is a primary regulator of when and where the organizer forms.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Ligandos de Señalización Nodal/metabolismo , Unión Proteica , Factores de Transcripción SOXB1/genética , Transcripción Genética , Proteínas Wnt/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
14.
Int J Dev Biol ; 53(7): 1023-33, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19598119

RESUMEN

The epibranchial placodes are specialized areas of surface ectoderm that make a vital contribution to the peripheral nervous system, producing sensory neurons of the cranial ganglia. They have long been characterized as a series of patches of thickened ectoderm in the vicinity of each pharyngeal cleft. We have previously demonstrated that Sox3 is not only expressed in these structures but also marks a larger, earlier domain. Here we demonstrate that neurons are produced from the Sox3-positive ectoderm that lies outside of the classically-defined epibranchial placodes. Our data show that these regions contribute neurons to the cranial ganglia, but then cease producing neurons as they lose Sox3 expression. We further demonstrate that the ectoderm in these regions is responsive to extracellular or intracellular stimuli that initiate aspects of neuronal differentiation. This response to neurogenic stimuli is lacking in regions of ectoderm distant from the normal sites of neurogenesis and the response to constitutively active Bmp receptor in particular, disappears coincident with loss of Sox3 expression. Finally, we show that a dominant repressor form of Sox3 blocks the ability of the ectoderm to undergo neurogenesis. Thus, Sox3 appears to be essential for the neurogenic capacity of surface ectoderm exhibited by the epibranchial placodes.


Asunto(s)
Embrión de Pollo/embriología , Ectodermo/embriología , Neurogénesis/fisiología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo/metabolismo , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOXB1/deficiencia , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Dev Biol ; 320(1): 289-301, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18572157

RESUMEN

Little is known of the first transcriptional events that regulate neural fate in response to extracellular signals such as Bmps and Fgfs. Sox3 is one of the earliest transcription factors to be expressed in the developing CNS and has been shown to be regulated by these signalling pathways. We have used both gain- and loss-of-function experiments in zebrafish to elucidate the role of Sox3 in determining neural fate. Ectopic Sox3 caused induction of neural tissue from a very early stage of cell specification in the ectoderm and this effect was maintained such that large domains of additional CNS were apparent, including almost complete duplications of the CNS. Knock-down of Sox3 using morpholinos resulted in a reduction in the size of the CNS, ears and eyes and subsequent inhibition of some aspects of neurogenesis. Our data also suggest that the pro-neural effects of Sox3 can compensate for inhibition of Fgf signalling in inducing neural tissue but it is not sufficient to maintain neural fate, suggesting the presence of Sox3-independent roles of Fgf at later stages.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Ectodermo/citología , Proteínas del Grupo de Alta Movilidad/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Regiones no Traducidas 5'/genética , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/genética , Oído/anomalías , Oído/embriología , Ectodermo/embriología , Embrión no Mamífero/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Datos de Secuencia Molecular , Placa Neural/citología , Neuronas/metabolismo , Factores de Transcripción SOXB1 , Transducción de Señal , Cráneo/anomalías , Cráneo/embriología , Factores de Transcripción/genética , Pez Cebra/genética
17.
Mech Dev ; 125(5-6): 377-95, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18374547

RESUMEN

In this study, the initial specification of foregut endoderm in the chick embryo was analyzed. A fate map constructed for the area pellucida endoderm at definitive streak-stage showed centrally-located presumptive cells of foregut-derived organs around Hensen's node. Intracoelomic cultivation of the area pellucida endoderm at this stage combined with somatic mesoderm resulted in the differentiation predominantly into intestinal epithelium, suggesting that this endoderm may not yet be regionally specified. In vitro cultivation of this endoderm for 1-1.5 day combined with Hensen's node or its derivatives but not with other embryonic structures/tissues elicited endodermal expression of cSox2 but not of cHoxb9, which is characteristic of specified foregut endoderm. When the anteriormost or posteriormost part of the area pellucida endoderm at this stage, whose fate is extraembryonic, was combined with Hensen's node or its derivatives for 1 day, then enwrapped with somatic mesoderm and cultivated for a long period intracoelomically, differentiation of various foregut organ epithelia was observed. Such epithelia never appeared in the endoderm associated with other embryonic structures/tissues and cultured similarly. Thus, Hensen's node and its derivatives that lie centrally in the presumptive endodermal area of the foregut are likely to play an important role in the initial specification of the foregut. Chordin-expressing COS cells or noggin-producing CHO cells transplanted into the anteriormost area pellucida of the definitve streak-stage embryo could induce endodermal expression of cSox2 but not of cHoxb9, suggesting that chordin and noggin that emanate from Hensen's node and its derivatives, may be involved in this process.


Asunto(s)
Biología Evolutiva/métodos , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Animales , Aves , Células CHO , Células COS , Linaje de la Célula , Embrión de Pollo , Chlorocebus aethiops , Coturnix , Cricetinae , Cricetulus , Endodermo/metabolismo , Mesodermo/metabolismo , Organizadores Embrionarios/patología
18.
Regul Pept ; 146(1-3): 131-9, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17996964

RESUMEN

The Shh pathway has been implicated in gastric carcinogenesis, and inhibition of this pathway has been shown to inhibit tumour growth in gastric cell lines. Assessing the in vivo efficacy of Shh pathway antagonists in blocking Shh signaling in the stomach is important for clinical trial design, but has not been previously investigated. We investigated the in vivo efficacy of a Shh antagonist, cyclopamine, in correlation to the secondary effects induced by this treatment on gastrin levels and acid secretion. Gastrin has been shown to induce Shh production, processing and activity, which is believed to be mediated by acid secretion. We tested this hypothesis and showed that hypergastrinaemia induces Shh production in vivo, and confirmed that this effect on Shh is mediated by acid secretion. We showed that cyclopamine treatment induces both hypergastrinaemia and Shh, and does not inhibit Gli-1. Inhibition of the effect of hypergastrinaemia on the Shh pathway, in cyclopamine-treated mice, was demonstrated by use of lansoprazole which concomitantly inhibited Gli-1, and did not increase Shh production. Therefore, this evidence suggests that hypergastrinaemia, via increased acid secretion, may increase expression of Shh and that Shh antagonists may require concomitant acid inhibition to successfully inhibit a pathway known to be up-regulated in gastric carcinogenesis.


Asunto(s)
Ácido Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Gastrinas/metabolismo , Proteínas Hedgehog/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Alcaloides de Veratrum/farmacología , 2-Piridinilmetilsulfinilbencimidazoles/farmacología , Animales , Antiulcerosos/farmacología , Gastrinas/sangre , Proteínas Hedgehog/metabolismo , Lansoprazol , Ratones , Ratones Transgénicos , Estómago/efectos de los fármacos
19.
Am J Hum Genet ; 81(2): 264-79, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17668377

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed "DUX4," containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism.


Asunto(s)
Evolución Molecular , Distrofia Muscular Facioescapulohumeral/genética , Secuencias Repetidas en Tándem , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas de Homeodominio , Humanos , Hibridación Fluorescente in Situ , Mamíferos , Ratones , Datos de Secuencia Molecular , Mutación , Filogenia , Primates , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transcripción Genética
20.
Dev Biol ; 303(2): 675-86, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17222818

RESUMEN

The epibranchial placodes are cranial, ectodermal thickenings that give rise to sensory neurons of the peripheral nervous system. Despite their importance in the developing animal, the signals responsible for their induction remain unknown. Using the placodal marker, sox3, we have shown that the same Fgf signaling required for otic vesicle development is required for the development of the epibranchial placodes. Loss of both Fgf3 and Fgf8 is sufficient to block placode development. We further show that epibranchial sox3 expression is unaffected in mutants in which no otic placode forms, where dlx3b and dlx4b are knocked down, or deleted along with sox9a. However, the forkhead factor, Foxi1, is required for both otic and epibranchial placode development. Thus, both the otic and epibranchial placodes form in a common region of ectoderm under the influence of Fgfs, but these two structures subsequently develop independently. Although previous studies have investigated the signals that trigger neurogenesis from the epibranchial placodes, this represents the first demonstration of the signaling events that underlie the formation of the placodes themselves, and therefore, the process that determines which ectodermal cells will adopt a neural fate.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Nervios Periféricos/embriología , Nervios Periféricos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Hibridación in Situ , Modelos Biológicos , Mutación , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Factores de Transcripción SOXB1 , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...