Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Dis ; 15(1): 295-310, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307816

RESUMEN

Energy storing tendons such as the human Achilles and equine superficial digital flexor tendon (SDFT) are prone to injury, with incidence increasing with aging, peaking in the 5th decade of life in the human Achilles tendon. The interfascicular matrix (IFM), which binds tendon fascicles, plays a key role in energy storing tendon mechanics, and aging alterations to the IFM negatively impact tendon function. While the mechanical role of the IFM in tendon function is well-established, the biological role of IFM-resident cell populations remains to be elucidated. Therefore, the aim of this study was to identify IFM-resident cell populations and establish how these populations are affected by aging. Cells from young and old SDFTs were subjected to single cell RNA-sequencing, and immunolabelling for markers of each resulting population used to localise cell clusters. Eleven cell clusters were identified, including tenocytes, endothelial cells, mural cells, and immune cells. One tenocyte cluster localised to the fascicular matrix, whereas nine clusters localised to the IFM. Interfascicular tenocytes and mural cells were preferentially affected by aging, with differential expression of genes related to senescence, dysregulated proteostasis and inflammation. This is the first study to establish heterogeneity in IFM cell populations, and to identify age-related alterations specific to IFM-localised cells.


Asunto(s)
Tendón Calcáneo , Células Endoteliales , Humanos , Caballos , Animales , Envejecimiento/metabolismo
2.
Biomed Mater ; 18(6)2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37703884

RESUMEN

Healthy synovium is critical for joint homeostasis. Synovial inflammation (synovitis) is implicated in the onset, progression and symptomatic presentation of arthritic joint diseases such as rheumatoid arthritis and osteoarthritis. Thus, the synovium is a promising target for the development of novel, disease-modifying therapeutics. However, target exploration is hampered by a lack of good pre-clinical models that accurately replicate human physiology and that are developed in a way that allows for widespread uptake. The current study presents a multi-channel, microfluidic, organ-on-a-chip (OOAC) model, comprising a 3D configuration of the human synovium and its associated vasculature, with biomechanical and inflammatory stimulation, built upon a commercially available OOAC platform. Healthy human fibroblast-like synoviocytes (hFLS) were co-cultured with human umbilical vein endothelial cells (HUVECs) with appropriate matrix proteins, separated by a flexible, porous membrane. The model was developed within the Emulate organ-chip platform enabling the application of physiological biomechanical stimulation in the form of fluid shear and cyclic tensile strain. The hFLS exhibited characteristic morphology, cytoskeletal architecture and matrix protein deposition. Synovial inflammation was initiated through the addition of interleukin-1ß(IL-1ß) into the synovium channel resulting in the increased secretion of inflammatory and catabolic mediators, interleukin-6 (IL-6), prostaglandin E2 (PGE2), matrix metalloproteinase 1 (MMP-1), as well as the synovial fluid constituent protein, hyaluronan. Enhanced expression of the inflammatory marker, intercellular adhesion molecule-1 (ICAM-1), was observed in HUVECs in the vascular channel, accompanied by increased attachment of circulating monocytes. This vascularised human synovium-on-a-chip model recapitulates a number of the functional characteristics of both healthy and inflamed human synovium. Thus, this model offers the first human synovium organ-chip suitable for widespread adoption to understand synovial joint disease mechanisms, permit the identification of novel therapeutic targets and support pre-clinical testing of therapies.


Asunto(s)
Células Endoteliales , Monocitos , Humanos , Microfluídica , Membrana Sinovial/metabolismo , Inflamación/metabolismo , Dispositivos Laboratorio en un Chip
3.
J Orthop Res ; 41(10): 2105-2113, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37312619

RESUMEN

Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories.


Asunto(s)
Músculos , Tendones , Fenómenos Biomecánicos , Tendones/fisiología , Resistencia a la Tracción , Pruebas Mecánicas
4.
BMC Musculoskelet Disord ; 24(1): 282, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046262

RESUMEN

BACKGROUND: Hypercholesterolemia is associated with tendon pathology, but the reasons underpinning this relationship are not well understood. Cholesterol can accumulate in the tendon non-collagenous matrix which may affect both global and local tissue mechanics. Changes to the local strain environment within tendon may have significant implications for mechanosensitive tenocytes. Here, we investigated the association between elevated blood cholesterol and presence of tendon lipids in the Achilles tendon. We expected lipids to be localised in the proteoglycan-rich inter-sub-tendon matrix (ISTM), therefore we also sought to examine the impact of this on the biomechanical and viscoelastic properties of the ISTM. METHODS: The Achilles tendons of 32 young wild-type (SD) and 32 apolipoprotein E knock-out rats (ApoE-/-) were harvested at 15.6 ± 2.3 weeks of age. 32 specimens underwent histological examination to assess the distribution of lipids throughout sub-tendons and ISTM. The remaining specimens were prepared for biomechanical testing, where the ISTM between the gastrocnemius and soleus sub-tendons was subjected to shear load mechanical testing. A sub-set of tests were video recorded to enable a strain analysis. RESULTS: ApoE-/- serum cholesterol was double that of SD rats (mean 2.25 vs. 1.10 mg/ml, p < 0.001) indicating a relatively mild hypercholesterolemia phenotype. Nonetheless, we found histological evidence of esterified lipids in the ISTM and unesterified lipids in the sub-tendons, although the location or intensity of staining was not appreciably different between rat strains. Despite a lack of observable histological differences in lipid content between groups, there were significant differences in the mechanical and viscoelastic behaviour of the Achilles sub-tendon matrix. CONCLUSION: Even slightly elevated cholesterol may result in subtle changes to tendon biomechanical properties and hence injury risk. The young age of our cohort and the mild phenotype of our ApoE-/- rats are likely to have limited our findings and so we also conclude that the ApoE-/- rat model is not well suited for investigating the biomechanical impact of tendon xanthomas on Achilles sub-tendon function.


Asunto(s)
Tendón Calcáneo , Hipercolesterolemia , Ratas , Animales , Tendón Calcáneo/lesiones , Ratas Sprague-Dawley , Hipercolesterolemia/etiología , Hipercolesterolemia/patología , Fenómenos Biomecánicos , Colesterol
5.
J Orthop Res ; 41(9): 1871-1881, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36866829

RESUMEN

Hypercholesterolemia is associated with tendon pathology and injury prevalence. Lipids can accumulate in the tendon's extracellular spaces, which may disrupt its hierarchical structure and the tenocytes physicochemical environment. We hypothesized that the tendon's ability to repair after injury would be attenuated with elevated cholesterol levels, leading to inferior mechanical properties. Fifty wild-type (sSD) and 50 apolipoprotein E knock-out rats (ApoE-/ - ) were given a unilateral patellar tendon (PT) injury at 12 weeks old; the uninjured limb served as a control. Animals were euthanized at 3-, 14,- or 42-days postinjury and PT healing was investigated. ApoE-/ - serum cholesterol was double that of SD rats (mean: 2.12 vs. 0.99 mg/mL, p < 0.001) and cholesterol level was related to the expression of several genes after injury; notably rats with higher cholesterol demonstrated a blunted inflammatory response. There was little physical evidence of tendon lipid content or differences in injury repair between groups, therefore we were not surprised that tendon mechanical or material properties did not differ between strains. The young age and the mild phenotype of our ApoE-/ - rats might explain these findings. Hydroxyproline content was positively related to total blood cholesterol, but this result did not translate to observable biomechanical differences, perhaps due to the narrow range of cholesterol levels observed. Tendon inflammatory and healing activity is modulated at the mRNA level even with a mild hypercholesterolemia. These important initial impacts need to be investigated as they may contribute to the known consequences of cholesterol on tendons in humans.


Asunto(s)
Hipercolesterolemia , Ligamento Rotuliano , Traumatismos de los Tendones , Humanos , Ratas , Animales , Hipercolesterolemia/complicaciones , Hipercolesterolemia/patología , Ratas Sprague-Dawley , Traumatismos de los Tendones/patología , Colesterol , Apolipoproteínas E , Fenómenos Biomecánicos
6.
J Biomech ; 151: 111546, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958089

RESUMEN

Repetitive overload is a primary factor in tendon injury, causing progressive accumulation of matrix damage concurrent with a cellular response. However, it remains unclear how these events occur at the initial stages of the disease, making it difficult to identify appropriate treatment approaches. Here, we describe the development of a new model to cyclically load the Achilles tendon (AT) of rats in vivo and investigate the initial structural and cellular responses. The model utilizes controlled dorsiflexion of the ankle joint applied near maximal dorsiflexion, for 10,000 cycles at 3 Hz. Animals were subjected to a single bout of in vivo loading under anaesthesia, and either culled immediately (without recovery from anaesthesia), or 48 h or 4-weeks post-loading. Macro strains were assessed in cadavers, whilst tendon specific microdamage was assessed through collagen-hybridizing peptide (CHP) immunohistochemistry which highlighted a significant rise in CHP staining in loaded ATs compared to contralateral controls, indicating an accumulation of overload-induced damage. Staining for pro-inflammatory mediators (IL-6 and COX-2) and matrix degradation markers (MMP-3 and -13) also suggests an initial cellular response to overload. Model validation confirmed our approach was able to explore early overload-induced damage within the AT, with microdamage present and no evidence of broader musculoskeletal damage. The new model may be implemented to map the progression of tendinopathy in the AT, and thus study potential therapeutic interventions.


Asunto(s)
Tendón Calcáneo , Tendinopatía , Traumatismos de los Tendones , Ratas , Animales , Tendón Calcáneo/lesiones , Traumatismos de los Tendones/complicaciones , Colágeno/metabolismo , Articulación del Tobillo
7.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36765593

RESUMEN

Organ-on-chip systems are capable of replicating complex tissue structures and physiological phenomena. The fine control of biochemical and biomechanical cues within these microphysiological systems provides opportunities for cancer researchers to build complex models of the tumour microenvironment. Interest in applying organ chips to investigate mechanisms such as metastatsis and to test therapeutics has grown rapidly, and this review draws together the published research using these microfluidic platforms to study cancer. We focus on both in-house systems and commercial platforms being used in the UK for fundamental discovery science and therapeutics testing. We cover the wide variety of cancers being investigated, ranging from common carcinomas to rare sarcomas, as well as secondary cancers. We also cover the broad sweep of different matrix microenvironments, physiological mechanical stimuli and immunological effects being replicated in these models. We examine microfluidic models specifically, rather than organoids or complex tissue or cell co-cultures, which have been reviewed elsewhere. However, there is increasing interest in incorporating organoids, spheroids and other tissue cultures into microfluidic organ chips and this overlap is included. Our review includes a commentary on cancer organ-chip models being developed and used in the UK, including work conducted by members of the UK Organ-on-a-Chip Technologies Network. We conclude with a reflection on the likely future of this rapidly expanding field of oncological research.

8.
Acta Biomater ; 131: 381-390, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271169

RESUMEN

Tendon consists of highly aligned collagen-rich fascicles surrounded by interfascicular matrix (IFM). Some tendons act as energy stores to improve locomotion efficiency, but such tendons commonly obtain debilitating injuries. In equine tendons, energy storing is achieved primarily through specialisation of the IFM. However, no studies have investigated IFM structure-function specialisation in human tendons. Here, we compare the human positional anterior tibial tendon and energy storing Achilles tendons, testing the hypothesis that the Achilles tendon IFM has specialised composition and mechanical properties, which are lost with ageing. Data demonstrate IFM specialisation in the energy storing Achilles, with greater elasticity and fatigue resistance than in the positional anterior tibial tendon. With ageing, alterations occur predominantly to the proteome of the Achilles IFM, which are likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments for tendinopathy. STATEMENT OF SIGNIFICANCE: Developing effective therapeutics or preventative measures for tendon injury necessitates the understanding of healthy tendon function and mechanics. By establishing structure-function relationships in human tendon and determining how these are affected by ageing, potential targets for therapeutics can be identified. In this study, we have used a combination of mechanical testing, immunolabelling and proteomics analysis to study structure-function specialisations in human tendon. We demonstrate that the interfascicular matrix is specialised for energy storing in the Achilles tendon, and that its proteome is altered with ageing, which is likely responsible for the observed trends towards decreased fatigue resistance. Knowledge of these key energy storing specialisations and their changes with ageing offers crucial insight towards developing treatments and preventative approaches for tendinopathy.


Asunto(s)
Tendón Calcáneo , Tendinopatía , Traumatismos de los Tendones , Envejecimiento , Animales , Colágeno , Caballos , Humanos
9.
Acta Biomater ; 123: 187-196, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33508509

RESUMEN

The tendon interfascicular matrix (IFM) binds tendon fascicles together. As a result of its low stiffness behaviour under small loads, it enables non-uniform loading and increased overall extensibility of tendon by facilitating fascicle sliding. This function is particularly important in energy storing tendons, with previous studies demonstrating enhanced extensibility, recovery and fatigue resistance in the IFM of energy storing compared to positional tendons. However, the compositional specialisations within the IFM that confer this behaviour remain to be elucidated. It is well established that the IFM is rich in elastin, therefore we sought to test the hypothesis that elastin depletion (following elastase treatment) will significantly impact IFM, but not fascicle, mechanical properties, reducing IFM resilience in all samples, but to a greater extent in younger tendons, which have a higher elastin content. Using a combination of quasi-static and fatigue testing, and optical imaging, we confirmed our hypothesis, demonstrating that elastin depletion resulted in significant decreases in IFM viscoelasticity, fatigue resistance and recoverability compared to untreated samples, with no significant changes to fascicle mechanics. Ageing had little effect on fascicle or IFM response to elastase treatment. This study offers a first insight into the functional importance of elastin in regional specific tendon mechanics. It highlights the important contribution of elastin to IFM mechanical properties, demonstrating that maintenance of a functional elastin network within the IFM is essential to maintain IFM and thus tendon integrity. STATEMENT OF SIGNIFICANCE: Developing effective treatments or preventative measures for musculoskeletal tissue injuries necessitates the understanding of healthy tissue function and mechanics. By establishing the contribution of specific proteins to tissue mechanical behaviour, key targets for therapeutics can be identified. Tendon injury is increasingly prevalent and chronically debilitating, with no effective treatments available. Here, we investigate how elastin modulates tendon mechanical behaviour, using enzymatic digestion combined with local mechanical characterisation, and demonstrate for the first time that removing elastin from tendon affects the mechanical properties of the interfascicular matrix specifically, resulting in decreased recoverability and fatigue resistance. These findings provide a new level of insight into tendon hierarchical mechanics, important for directing development of novel therapeutics for tendon injury.


Asunto(s)
Elastasa Pancreática , Traumatismos de los Tendones , Envejecimiento , Elastina , Humanos , Tendones
10.
Artículo en Inglés | MEDLINE | ID: mdl-32766214

RESUMEN

The Achilles tendon (AT) is comprised of three distinct sub-tendons bound together by the inter-subtendon matrix (ISTM). The interactions between sub-tendons will have important implications for AT function. The aim of this study was to investigate the extent to which the ISTM facilitates relative sliding between sub-tendons, and serves as a pathway for force transmission between the gastrocnemius (GAS) and soleus (SOL) sub-tendons of the rat AT. In this study, ATs were harvested from Wistar rats, and the mechanical behavior and composition of the ISTM were explored. To determine force transmission between sub-tendons, the proximal and distal ends of the GAS and SOL sub-tendons were secured, and the forces at each of these locations were measured during proximal loading of the GAS. To determine the ISTM mechanical behavior, only the proximal GAS and distal SOL were secured, and the ISTM was loaded in shear. Finally, for compositional analysis, histological examination assessed the distribution of matrix proteins throughout sub-tendons and the ISTM. The results revealed distinct differences between the forces at the proximal and distal ends of both sub-tendons when proximal loading was applied to the GAS, indicating force transmission between GAS and SOL sub-tendons. Inter-subtendon matrix tests demonstrated an extended initial low stiffness toe region to enable some sub-tendon sliding, coupled with high stiffness linear region such that force transmission between sub-tendons is ensured. Histological data demonstrate an enrichment of collagen III, elastin, lubricin and hyaluronic acid in the ISTM. We conclude that ISTM composition and mechanical behavior are specialized to allow some independent sub-tendon movement, whilst still ensuring capacity for force transmission between the sub-tendons of the AT.

11.
J Biomech Eng ; 142(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34043761

RESUMEN

Soft tissues exhibit complex viscoelastic behavior, including strain-rate dependence, hysteresis, and strain-dependent relaxation. In this paper, a model for soft tissue viscoelasticity is developed that captures all of these features and is based upon collagen recruitment, whereby fibrils contribute to tissue stiffness only when taut. We build upon existing recruitment models by additionally accounting for fibril creep and by explicitly modeling the contribution of the matrix to the overall tissue viscoelasticity. The fibrils and matrix are modeled as linear viscoelastic and each fibril has an associated critical strain (corresponding to its length) at which it becomes taut. The model is used to fit relaxation tests on three rat tail tendon fascicles and predict their response to cyclic loading. It is shown that all of these mechanical tests can be reproduced accurately with a single set of constitutive parameters, the only difference between each fascicle being the distribution of their fibril crimp lengths. By accounting for fibril creep, we are able to predict how the fibril length distribution of a fascicle changes over time under a given deformation. Furthermore, the phenomenon of strain-dependent relaxation is explained as arising from the competition between the fibril and matrix relaxation functions.


Asunto(s)
Tendones , Animales , Elasticidad , Ratas , Estrés Mecánico , Viscosidad
12.
Scand J Med Sci Sports ; 29(10): 1511-1520, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31102473

RESUMEN

Tendinopathy is a prevalent, highly debilitating condition, with poorly defined etiology. A wide range of clinical treatments has been proposed, with systematic reviews largely supporting shock wave therapy or eccentric exercise. Characterizing these treatments have demonstrated both generate perturbations within tendon at a frequency of approximately 8-12 Hz. Consequently, it is hypothesized that loading in this frequency range initiates increased anabolic tenocyte behavior, promoting tendon repair. The primary aim of this study was to investigate the effects of 10 Hz perturbations on tenocyte metabolism, comparing gene expression in response to a 10 Hz and 1 Hz loading profile. Tenocytes from healthy and tendinopathic human tendons were seeded into 3D collagen gels and subjected to 15 minutes cyclic strain at 10 Hz or 1 Hz. Tenocytes from healthy tendon showed increased expression of all analyzed genes in response to loading, with significantly increased expression of inflammatory and degradative genes with 10 Hz, relative to 1 Hz loading. By contrast, whilst the response of tenocytes from tendinopathy tendon also increased with 10 Hz loading, the overall response profile was more varied and less intense, possibly indicative of an altered healing response. Through inhibition of the pathway, IL1 was shown to be involved in the degradative and catabolic response of cells to high-frequency loading, abrogating the loading response. This study has demonstrated for the first time that loading at a frequency of 10 Hz may enhance the metabolic response of tenocytes by initiating an immediate degradatory and inflammatory cell response through the IL1 pathway, perhaps as an initial stage of tendon healing.


Asunto(s)
Estrés Mecánico , Tendinopatía/patología , Tenocitos/citología , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Inflamación , Interleucina-1/metabolismo , Persona de Mediana Edad , Transducción de Señal , Tendones/citología , Tenocitos/metabolismo , Vibración , Adulto Joven
13.
J Mech Behav Biomed Mater ; 93: 230-245, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30844614

RESUMEN

Viscoelastic attributes of the aortic valve (AV) tissue are, in part, reflected in stress-relaxation and creep behaviours observed in vitro. While the extent of AV time-dependent behaviour under physiological conditions is not yet fully understood, in vitro the tissue exhibits clear stress-relaxation but minimal creep under equi-biaxial loading, in contrast to uniaxial loading where creep is evidently exhibited. Tissue-level stress-relaxation behaviour follows the form of (single and double) Maxwell-type exponential decay relaxation modes, and creep occurs in the form of exponential primary followed by linear secondary creep modes. This paper aims to provide an explanation for these behaviours based on the AV microstructural (i.e. fibre-level) mechanics. The kinematics of AV microstructural reorganisation is investigated experimentally using confocal microscopy to track the interstitial cell nuclei as markers of AV microstructural reorganisation under uniaxial loading. A theoretical framework is then applied to describe the experimentally observed kinematics in mathematical terms. Using this framework it is shown that at the microstructural level, AV stress-relaxation and creep behaviours both stem from the same dissipative kinematics of fibre-fibre and fibre-matrix interactions, that occur as a consequence of microstructural reorganisation due to the applied tissue-level loads. It is additionally shown that the proposed dissipative kinematics correctly predict the nature of relaxation and creep behaviours, i.e. the type and the number of modes involved. Further analysis is presented to demonstrate that the origin of the minimal creep behaviour under equi-biaxial loading can be explained to stem from tissue-level loading boundary conditions. These key findings help to better understand the underlying causes of AV stress-relaxation and creep behaviours in vivo, and why these may differ from the behaviours observed under non-physiological in vitro loading.


Asunto(s)
Válvula Aórtica , Modelos Biológicos , Estrés Mecánico , Fenómenos Biomecánicos , Ensayo de Materiales
14.
Macromol Biosci ; 18(12): e1800293, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30318698

RESUMEN

The creation of biomaterials with aligned fibers offers broad applications in tissue regeneration, guiding cell organization and physiological cues, and providing appropriate mechanical properties for many biomedical applications. Herein, for the first time, highly aligned electrospun membranes are designed and developed using glycopolymers. The membranes retain the strong mechanical properties of polycaprolactone, and fiber alignment facilitates the creation of anisotropic mechanical properties, enabling failure stress to be manipulated by an order of magnitude relative to randomly ordered fibers. Biocompatibility and cell attachment in these materials are characterized using tenocytes as a cell model. Both random and aligned fiber glycopolymers show promising biocompatibility, but aligned glycopolymer fibers additionally offer patterning to guide cell organization. These materials potentially provide a novel platform for tissue regeneration studies, demonstrating that the sugar-lectin interaction can produce materials capable of managing cell guidance.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Poliestirenos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Materiales Biocompatibles/farmacología , Bovinos , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas Electroquímicas , Humanos , Ensayo de Materiales , Membranas Artificiales , Poliésteres/farmacología , Poliestirenos/farmacología , Cultivo Primario de Células , Tenocitos/citología , Tenocitos/efectos de los fármacos , Tenocitos/fisiología , Resistencia a la Tracción
15.
Sci Rep ; 8(1): 11107, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038235

RESUMEN

This study used isolated human tenocytes to test the hypothesis that cyclic mechanical strain directly stimulates primary cilia disassembly, and to elucidate the mechanisms involved. Cells were seeded onto flexible membranes and strained at 0-3%; 1 Hz, for up to 24 hours. Cilia length and prevalence progressively reduced with increasing strain duration but showed full recovery within 2 hours of strain removal. The response to loading was not influenced by actin organisation as seen in other cell types. However, the loading response could be recreated by treatment with TGFß. Furthermore, treatment with the HDAC6 inhibitor Tubacin, or a TGFß receptor inhibitor both prevented strain induced cilia disassembly. These data are the first to describe primary cilia expression in isolated tenocytes, showing that mechanical strain regulates cilia expression independent of changes in tendon extracellular matrix. Furthermore, we show that cilia disassembly is mediated by the activation of TGFß receptors leading to activation of HDAC6. Previous studies have shown that cilia are required for TGFß signalling and that tendon mechanosignalling is mediated by TGFß. The present study therefore suggests a novel feedback mechanism whereby cilia disassembly inhibits prolonged TGFß activation in response to continuous cyclic loading.


Asunto(s)
Cilios/metabolismo , Histona Desacetilasa 6/metabolismo , Estrés Mecánico , Tendones/metabolismo , Tendones/patología , Factor de Crecimiento Transformador beta/metabolismo , Actinas/metabolismo , Animales , Matriz Extracelular/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Ratas , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Tenocitos/metabolismo
16.
17.
Biochem Biophys Res Commun ; 499(3): 642-647, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29601813

RESUMEN

We recently developed a fiber composite consisting of tenocytes seeded onto discontinuous fibers embedded within a hydrogel, designed to mimic physiological tendon micromechanics of tension and shear. This study examined if cell adhesion peptide (DGEA or YRGDS), fiber modulus (50 or 1300 kPa) and/or cyclic strain (5% strain, 1 Hz) influenced bovine tenocyte gene expression. Ten genes were analyzed and none were sensitive to peptide or fiber modulus in the absence of cyclic tensile strain. Genes associated with tendon (SCX and TNMD), collagens (COL1A1, COL3A1, COL11A1), and matrix remodelling (MMP1, MMP2, and TIMP3) were insensitive to cyclic strain. Contrarily, cyclic strain up-regulated IL6 by 30-fold and MMP3 by 10-fold in soft YRGDS fibers. IL6 expression in soft YRGDS fibers was 5.7 and 3.3-fold greater than in soft DGEA fibers and stiff RGD fibers, respectively, under cyclic strain. Our findings suggest that changes in the surrounding matrix can influence catabolic genes in tenocytes when cultured in a complex strain environment mimicking that of tendon, while having minimal effects on tendon and homeostatic genes.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hidrogeles/farmacología , Péptidos/química , Polietilenglicoles/química , Estrés Mecánico , Tendones/citología , Tenocitos/citología , Resistencia a la Tracción , Secuencias de Aminoácidos , Animales , Biomarcadores/metabolismo , Bovinos , Adhesión Celular/efectos de los fármacos , Colágeno/genética , Colágeno/metabolismo , Módulo de Elasticidad
18.
Acta Biomater ; 70: 281-292, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29409868

RESUMEN

Structure-function relationships in tendons are directly influenced by the arrangement of collagen fibres. However, the details of such arrangements in functionally distinct tendons remain obscure. This study demonstrates the use of quantitative polarised light microscopy (qPLM) to identify structural differences in two major tendon compartments at the mesoscale: fascicles and interfascicular matrix (IFM). It contrasts functionally distinct positional and energy storing tendons, and considers changes with age. Of particular note, the technique facilitates the analysis of crimp parameters, in which cutting direction artefact can be accounted for and eliminated, enabling the first detailed analysis of crimp parameters across functionally distinct tendons. IFM shows lower birefringence (0.0013 ±â€¯0.0001 [-]), as compared to fascicles (0.0044 ±â€¯0.0005 [-]), indicating that the volume fraction of fibres must be substantially lower in the IFM. Interestingly, no evidence of distinct fibre directional dispersions between equine energy storing superficial digital flexor tendons (SDFTs) and positional common digital extensor tendons (CDETs) were noted, suggesting either more subtle structural differences between tendon types or changes focused in the non-collagenous components. By contrast, collagen crimp characteristics are strongly tendon type specific, indicating crimp specialisation is crucial in the respective mechanical function. SDFTs showed much finer crimp (21.1 ±â€¯5.5 µm) than positional CDETs (135.4 ±â€¯20.1 µm). Further, tendon crimp was finer in injured tendon, as compared to its healthy equivalents. Crimp angle differed strongly between tendon types as well, with average of 6.5 ±â€¯1.4° in SDFTs and 13.1 ±â€¯2.0° in CDETs, highlighting a substantially tighter crimp in the SDFT, likely contributing to its effective recoil capacity. STATEMENT OF SIGNIFICANCE: This is the first study to quantify birefringence in fascicles and interfascicular matrix of functionally distinct energy storing and positional tendons. It adopts a novel method - quantitative polarised light microscopy (qPLM) to measure collagen crimp angle, avoiding artefacts related to the direction of histological sectioning, and provides the first direct comparison of crimp characteristics of functionally distinct tendons of various ages. A comparison of matched picrosirius red stained and unstained tendons sections identified non-homogenous staining effects, and leads us to recommend that only unstained sections are analysed in the quantitative manner. qPLM is successfully used to assess birefringence in soft tissue sections, offering a promising tool for investigating the structural arrangements of fibres in (soft) tissues and other composite materials.


Asunto(s)
Envejecimiento/metabolismo , Colágeno/metabolismo , Tendones/metabolismo , Animales , Caballos , Microscopía de Polarización
19.
Sci Rep ; 7(1): 9713, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855560

RESUMEN

Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy.


Asunto(s)
Envejecimiento/metabolismo , Elastina/metabolismo , Fascia/metabolismo , Tendones/metabolismo , Animales , Desmosina/metabolismo , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Caballos , Tendinopatía/etiología , Tendinopatía/metabolismo , Tendinopatía/patología , Tendones/patología
20.
J R Soc Interface ; 14(133)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28794162

RESUMEN

A nonlinear elastic microstructural model is used to investigate the relationship between structure and function in energy-storing and positional tendons. The model is used to fit mechanical tension test data from the equine common digital extensor tendon (CDET) and superficial digital flexor tendon (SDFT), which are used as archetypes of positional and energy-storing tendons, respectively. The fibril crimp and fascicle helix angles of the two tendon types are used as fitting parameters in the mathematical model to predict their values. The outer fibril crimp angles were predicted to be 15.1° ± 2.3° in the CDET and 15.8° ± 4.1° in the SDFT, and the average crimp angles were predicted to be 10.0° ± 1.5° in the CDET and 10.5° ± 2.7° in the SDFT. The crimp angles were not found to be statistically significantly different between the two tendon types (p = 0.572). By contrast, the fascicle helix angles were predicted to be 7.9° ± 9.3° in the CDET and 29.1° ± 10.3° in the SDFT and were found to be statistically highly significantly different between the two tendon types (p < 0.001). This supports previous qualitative observations that helical substructures are more likely to be found in energy-storing tendons than in positional tendons and suggests that the relative compliance of energy-storing tendons may be directly caused by these helical substructures.


Asunto(s)
Miembro Anterior/fisiología , Modelos Biológicos , Tendones/fisiología , Animales , Miembro Anterior/anatomía & histología , Caballos , Tendones/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...