Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 31(5): 973-988.e4, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38335967

RESUMEN

The (poly)pharmacology of drug metabolites is seldom comprehensively characterized in drug discovery. However, some drug metabolites can reach high plasma concentrations and display in vivo activity. Here, we use computational and experimental methods to comprehensively characterize the kinase polypharmacology of M324, the major metabolite of the PARP1 inhibitor rucaparib. We demonstrate that M324 displays unique PLK2 inhibition at clinical concentrations. This kinase activity could have implications for the efficacy and safety of rucaparib and therefore warrants further clinical investigation. Importantly, we identify synergy between the drug and the metabolite in prostate cancer models and a complete reduction of α-synuclein accumulation in Parkinson's disease models. These activities could be harnessed in the clinic or open new drug discovery opportunities. The study reported here highlights the importance of characterizing the activity of drug metabolites to comprehensively understand drug response in the clinic and exploit our current drug arsenal in precision medicine.


Asunto(s)
Indoles , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Indoles/farmacología , Indoles/química , Indoles/metabolismo , Animales , Masculino , Ratones , Sinergismo Farmacológico , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
2.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461721

RESUMEN

Tumor-reactive CD8 T cells found in cancer patients are frequently dysfunctional, unable to halt tumor growth. Adoptive T cell transfer (ACT), the administration of large numbers of in vitro-generated cytolytic tumor-reactive CD8 T cells, is an important cancer immune therapy being pursued. However, a limitation of ACT is that transferred CD8 T cells often rapidly lose effector function, and despite exciting results in certain malignancies, few ACT clinical trials have shown responses in solid tumors. Here, we developed preclinical cancer mouse models to investigate if and how tumor-specific CD4 T cells can be enlisted to overcome CD8 T cell dysfunction in the setting of ACT. In situ confocal microscopy of color-coded cancer cells, tumor-specific CD8 and CD4 T cells, and antigen presenting cells (APC), combined with functional studies, revealed that the spatial positioning and interactions of CD8 and CD4 T cells, but not their numbers, dictates ACT efficacy and anti-tumor responses. We uncover a new role of antigen-specific CD4 T cells in addition to the known requirement for CD4 T cells during priming/activation of naïve CD8 T cells. CD4 T cells must co-engage with CD8 T cells and APC cross-presenting CD8- and CD4-tumor antigens during the effector phase, forming a three-cell-cluster (triad), to license CD8 T cell cytotoxicity and mediate cancer cell elimination. Triad formation transcriptionally and epigenetically reprogram CD8 T cells, prevent T cell dysfunction/exhaustion, and ultimately lead to the elimination of large established tumors and confer long-term protection from recurrence. When intratumoral triad formation was disrupted, adoptively transferred CD8 T cells could not be reprogrammed, and tumors progressed despite equal numbers of tumor-infiltrating CD8 and CD4 T cells. Strikingly, the formation of CD4 T cell::CD8 T cell::APC triads in tumors of patients with lung cancers treated with immune checkpoint blockade was associated with clinical responses, but not CD4::APC dyads or overall numbers of CD8 or CD4 T cells, demonstrating the importance of triads in non-ACT settings in humans. Our work uncovers intratumoral triads as a key requirement for anti-tumor immunity and a new role for CD4 T cells in CD8 T cell cytotoxicity and cancer cell eradication.

3.
Neuron ; 110(6): 935-966, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35134347

RESUMEN

The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.


Asunto(s)
Autofagia , Lisosomas , Apoptosis , Autofagia/fisiología , Encéfalo/metabolismo , Humanos , Neuronas/metabolismo
4.
Sci Adv ; 7(45): eabg3897, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739309

RESUMEN

Age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions are known as tauopathies. We previously linked a loss-of-function mutation in the TSC1 gene to tau accumulation and frontotemporal lobar degeneration. Now, we have identified genetic variants in TSC1 that decrease TSC1/hamartin levels and predispose to tauopathies such as Alzheimer's disease and progressive supranuclear palsy. Cellular and murine models of TSC1 haploinsufficiency, as well as human brains carrying a TSC1 risk variant, accumulated tau protein that exhibited aberrant acetylation. This acetylation hindered tau degradation via chaperone-mediated autophagy, thereby leading to its accumulation. Aberrant tau acetylation in TSC1 haploinsufficiency resulted from the dysregulation of both p300 acetyltransferase and SIRT1 deacetylase. Pharmacological modulation of either enzyme restored tau levels. This study substantiates TSC1 as a novel tauopathy risk gene and includes TSC1 haploinsufficiency as a genetic model for tauopathies. In addition, these findings promote tau acetylation as a rational target for tauopathy therapeutics and diagnostic.

5.
Cell ; 184(10): 2696-2714.e25, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891876

RESUMEN

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Autofagia Mediada por Chaperones/fisiología , Neuronas/metabolismo , Proteostasis , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Quinasa de la Caseína I/genética , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Neuronas/patología , Proteoma
6.
Nat Commun ; 10(1): 780, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770803

RESUMEN

Autophagy is an essential self-digestion machinery for cell survival and homoeostasis. Membrane elongation is fundamental, as it drives the formation of the double-membrane vesicles that engulf cytosolic material. LC3-lipidation, the signature of autophagosome formation, results from a complex ubiquitin-conjugating cascade orchestrated by the ATG16L1 protein, whose regulation is unknown. Here, we identify the Gigaxonin-E3 ligase as the first regulator of ATG16L1 turn-over and autophagosome production. Gigaxonin interacts with the WD40 domain of ATG16L1 to drive its ubiquitination and subsequent degradation. Gigaxonin depletion induces the formation of ATG16L1 aggregates and impairs LC3 lipidation, hence altering lysosomal fusion and degradation of the main autophagy receptor p62. Altogether, we demonstrate that the Gigaxonin-E3 ligase controls the production of autophagosomes by a reversible, ubiquitin-dependent process selective for ATG16L1. Our findings unveil the fundamental mechanisms of the control of autophagosome formation, and provide a molecular switch to fine-tune the activation of autophagy.


Asunto(s)
Autofagosomas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos
7.
Lancet Neurol ; 17(9): 802-815, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129476

RESUMEN

Cells rely on surveillance systems such as autophagy to handle protein alterations and organelle damage. Dysfunctional autophagy, an evolutionarily conserved cellular mechanism for degradation of intracellular components in lysosomes, frequently leads to neurodegeneration. The neuroprotective effect of autophagy stems from its ability to eliminate pathogenic forms of proteins such as α-synuclein or tau. However, the same pathogenic proteins often affect different types and steps of the autophagic process. Furthermore, genetic studies have shown that some proteins related to neurodegeneration, such as huntingtin, participate in autophagy as one of their physiological functions. This complex interplay between autophagy and neurodegeneration suggests that targeting autophagy as a whole might have limited applicability in neurodegenerative diseases, and that future efforts should focus instead on targeting specific types and steps of the autophagic process. This change of strategy in the modulation of autophagy might hold promise for future disease-modifying therapies for patients with neurodegenerative disorders.


Asunto(s)
Autofagia/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades Neurodegenerativas/terapia , Animales , Autofagia/efectos de los fármacos , Humanos , Fármacos Neuroprotectores/uso terapéutico , alfa-Sinucleína/metabolismo
8.
Am J Hum Genet ; 99(3): 695-703, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545681

RESUMEN

Via whole-exome sequencing, we identified rare autosomal-recessive variants in UBA5 in five children from four unrelated families affected with a similar pattern of severe intellectual deficiency, microcephaly, movement disorders, and/or early-onset intractable epilepsy. UBA5 encodes the E1-activating enzyme of ubiquitin-fold modifier 1 (UFM1), a recently identified ubiquitin-like protein. Biochemical studies of mutant UBA5 proteins and studies in fibroblasts from affected individuals revealed that UBA5 mutations impair the process of ufmylation, resulting in an abnormal endoplasmic reticulum structure. In Caenorhabditis elegans, knockout of uba-5 and of human orthologous genes in the UFM1 cascade alter cholinergic, but not glutamatergic, neurotransmission. In addition, uba5 silencing in zebrafish decreased motility while inducing abnormal movements suggestive of seizures. These clinical, biochemical, and experimental findings support our finding of UBA5 mutations as a pathophysiological cause for early-onset encephalopathies due to abnormal protein ufmylation.


Asunto(s)
Alelos , Encefalopatías/genética , Mutación/genética , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Edad de Inicio , Animales , Mapeo Encefálico , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Niño , Preescolar , Neuronas Colinérgicas/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Epilepsia/genética , Exoma/genética , Femenino , Fibroblastos , Genes Recesivos/genética , Humanos , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Microcefalia/genética , Trastornos del Movimiento , Proteínas/genética , Transmisión Sináptica/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/deficiencia , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA