Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(20): 1597-1608, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33961402

RESUMEN

Copper-zinc superoxide dismutase (SOD1) is a major antioxidant metalloenzyme that protects cells from oxidative damage by superoxide anions (O2-). Structural, biophysical, and other characteristics have in the past been compiled for mammalian SOD1s and for the highly homologous fungal and bovine SOD1s. Here, we characterize the biophysical properties of a plant SOD1 from tomato chloroplasts and present several of its crystal structures. The most unusual of these structures is a structure at low pH in which tSOD1 harbors zinc in the copper-binding site but contains no metal in the zinc-binding site. The side chain of D83, normally a zinc ligand, adopts an alternate rotameric conformation to form an unusual bidentate hydrogen bond with the side chain of D124, precluding metal binding in the zinc-binding site. This alternate conformation of D83 appears to be responsible for the previously observed pH-dependent loss of zinc from the zinc-binding site of SOD1. Titrations of cobalt into apo tSOD1 at a similar pH support the lack of an intact zinc-binding site. Further characterization of tSOD1 reveals that it is a weaker dimer relative to human SOD1 and that it can be activated in vivo through a copper chaperone for the SOD1-independent mechanism.


Asunto(s)
Solanum lycopersicum/metabolismo , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Sitios de Unión , Quelantes , Cobre/metabolismo , Disulfuros/química , Concentración de Iones de Hidrógeno , Ligandos , Solanum lycopersicum/fisiología , Metales , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica , Superóxido Dismutasa/fisiología , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Superóxidos , Zinc/metabolismo
2.
FEBS Open Bio ; 8(7): 1083-1092, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29988575

RESUMEN

Within the family of pyridine nucleotide disulfide oxidoreductase (PNDOR), enzymes are a group of single-cysteine containing FAD-dependent reductases that utilize a tightly bound coenzyme A to assist in the NAD(P)H-dependent reduction of di-, per-, and polysulfide substrates in bacteria and archaea. For many of these homodimeric enzymes, it has proved difficult to determine the substrate specificity and metabolic function based on sequence and genome analysis alone. Coenzyme A-disulfide reductase (CoADR) isolated from Pyrococcus horikoshii (phCoADR) reduces Co-A per- and polysulfides, but, unlike other highly homologous members of this group, is a poor CoA disulfide reductase. The phCoADR structure has a narrower access channel for CoA substrates, which suggested that this restriction might be responsible for the enzyme's poor activity toward the bulky CoA disulfide substrate. To test this hypothesis, the substrate channel was widened by making four mutations along the channel wall (Y65A, Y66A, P67G, and H367G). The structure of the quadruple mutant shows a widened substrate channel, which is supported by a fourfold increase in kcat for the NAD(P)H-dependent reduction of CoA disulfide and enhanced activity toward the substrate at lower temperatures. Anaerobic titrations of the enzyme with NADH revealed a half-site reactivity not observed with the wild-type enzyme in which one subunit of the enzyme could be fully reduced to an EH4 state, while the other remained in an EH2 or EH2·NADH state. These results suggest that for these closely related enzymes, substrate channel morphology is an important determinant of substrate specificity, and homology modeling will be the preferred technique for predicting function among PNDORs.

3.
J Biol Chem ; 290(4): 2405-18, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25433341

RESUMEN

The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.


Asunto(s)
Proteínas Mutantes/química , Proteínas de Saccharomyces cerevisiae/química , Superóxido Dismutasa/química , Esclerosis Amiotrófica Lateral/genética , Apoproteínas/química , Rastreo Diferencial de Calorimetría , Disulfuros/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Espectrometría de Masas , Metales/química , Mutación , Estrés Oxidativo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/química , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría , Superóxidos/química , Zinc/química
4.
J Biol Inorg Chem ; 18(8): 985-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24061560

RESUMEN

Copper-zinc superoxide dismutase (Sod1) is an abundant intracellular enzyme that catalyzes the disproportionation of superoxide to give hydrogen peroxide and dioxygen. In most organisms, Sod1 acquires copper by a combination of two pathways, one dependent on the copper chaperone for Sod1 (CCS), and the other independent of CCS. Examples have been reported of two exceptions: Saccharomyces cerevisiae, in which Sod1 appeared to be fully dependent on CCS, and Caenorhabditis elegans, in which Sod1 was completely independent of CCS. Here, however, using overexpressed Sod1, we show there is also a significant amount of CCS-independent activation of S. cerevisiae Sod1, even in low-copper medium. In addition, we show CCS-independent oxidation of the disulfide bond in S. cerevisiae Sod1. There appears to be a continuum between CCS-dependent and CCS-independent activation of Sod1, with yeast falling near but not at the CCS-dependent end.


Asunto(s)
Cobre/metabolismo , Activación Enzimática , Saccharomyces cerevisiae/enzimología , Superóxido Dismutasa/metabolismo , Oxidación-Reducción , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa-1 , Zinc/metabolismo
5.
Biochemistry ; 52(16): 2764-73, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23530771

RESUMEN

FAD and NAD(P)H-dependent coenzyme A disulfide reductases/polysulfide reductases (CoADR/Psr) have been proposed to be important for the reduction of sulfur and disulfides in the sulfur-reducing anaerobic hyperthermophiles Pyrococcus horikoshii and Pyrococcus furiosus; however, the form(s) of sulfur that the enzyme actually reduces are not clear. Here we determined the structure for the FAD- and coenzyme A-containing holoenzyme from P. horikoshii to 2.7 Å resolution and characterized its substrate specificity. The enzyme is relatively promiscuous and reduces a range of disulfide, persulfide, and polysulfide compounds. These results indicate that the likely in vivo substrates are NAD(P)H and di-, poly-, and persulfide derivatives of coenzyme A, although polysulfide itself is also efficiently reduced. The role of the enzyme in the reduction of elemental sulfur (S(8)) in situ is not, however, ruled out by these results, and the possible roles of this substrate are discussed. During aerobic persulfide reduction, rapid recycling of the persulfide substrate was observed, which is proposed to occur via sulfide oxidation by O(2) and/or H(2)O(2). As expected, this reaction disappears under anaerobic conditions and may explain observations by others that CoADR is not essential for S(0) respiration in Pyrococcus or Thermococcus but appears to participate in oxidative defense in the presence of S(0). When compared to the homologous Npsr enzyme from Shewanella loihica PV-4 and homologous enzymes known to reduce CoA disulfide, the phCoADR structure shows a relatively restricted substrate channel leading into the sulfur-reducing side of the FAD isoalloxazine ring, suggesting how this enzyme class may select for specific disulfide substrates.


Asunto(s)
NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Pyrococcus horikoshii/enzimología , Cristalografía por Rayos X , Cinética , Modelos Moleculares , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Conformación Proteica , Especificidad por Sustrato , Sulfuros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...