Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Insect Sci ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38562016

RESUMEN

Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.

2.
PeerJ ; 12: e16949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410806

RESUMEN

Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.


Asunto(s)
Hemípteros , Manihot , Virus , Humanos , Animales , Filogenia , Manihot/genética , Hemípteros/genética , Verduras , Agua
3.
Viruses ; 15(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37515278

RESUMEN

Yam (Dioscorea spp.) productivity is constrained significantly by the lack of a formal seed system. Vegetative propagation, through tuber setts as 'seed' yams, encourages the recycling of virus-infected planting materials, contributing to high virus incidence and yield losses. Efforts are ongoing to increase the production of high-quality seed yams in a formal seed system to reduce virus-induced yield losses and enhance the crop's productivity and food security. Specific and sensitive diagnostic tests are imperative to prevent the multiplication of virus-infected materials contributing to a sustainable seed yam certification system. During routine indexing of yam accessions, discrepancies were observed between the results obtained from the reverse transcription loop-mediated isothermal amplification (RT-LAMP) test and those from reverse transcription polymerase chain reaction (RT-PCR); RT-LAMP failed to detect Yam mosaic virus (YMV) in some samples that tested positive by RT-PCR. This prompted the design of a new set of LAMP primers, YMV1-OPT primers. These primers detected as little as 0.1 fg/µL of purified RNA obtained from a YMV-infected plant, a sensitivity equivalent to that obtained with RT-PCR. RT-LAMP using YMV1-OPT primers is recommended for all future virus-indexing of seed yams for YMV, offering a rapid, sensitive, and cost-effective approach.


Asunto(s)
Dioscorea , Transcripción Reversa , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Cartilla de ADN/genética , Sensibilidad y Especificidad
4.
BMC Genomics ; 24(1): 408, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468834

RESUMEN

BACKGROUND: The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS: We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS: These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.


Asunto(s)
Hemípteros , Virus de Plantas , Animales , Filogenia , África , Asia
5.
Viruses ; 14(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36146691

RESUMEN

Viruses are a major constraint for yam production worldwide. They hamper the conservation, movement, and exchange of yam germplasm and are a threat to food security in tropical and subtropical areas of Africa and the Pacific where yam is a staple food and a source of income. However, the biology and impact of yam viruses remains largely unknown. This review summarizes current knowledge on yam viruses and emphasizes gaps that exist in the knowledge of the biology of these viruses, their diagnosis, and their impact on production. It provides essential information to inform the implementation of more effective virus control strategies.


Asunto(s)
Dioscorea , Virus , África , Manejo de la Enfermedad , Filogenia
6.
Insects ; 13(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35735880

RESUMEN

Bean leaf beetle (BLB) (Ootheca mutabilis) has emerged as an important bean pest in Uganda, leading to devastating crop losses. There is limited information on the population genetic structure of BLB despite its importance. In this study, novel microsatellite DNA markers and the partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene sequences were used to analyze the spatial population genetic structure, genetic differentiation and haplotype diversity of 86 O. mutabilis samples from 16 (districts) populations. We identified 19,356 simple sequence repeats (SSRs) (mono, di-, tri-, tetra-, penta-, and hexa-nucleotides) of which 81 di, tri and tetra-nucleotides were selected for primer synthesis. Five highly polymorphic SSR markers (4-21 alleles, heterozygosity 0.59-0.84, polymorphic information content (PIC) 50.13-83.14%) were used for this study. Analyses of the 16 O. mutabilis populations with these five novel SSRs found nearly all the genetic variation occurring within populations and there was no evidence of genetic differentiation detected for both types of markers. Also, there was no evidence of isolation by distance between geographical and genetic distances for SSR data and mtCOI data except in one agro-ecological zone for mtCOI data. Bayesian clustering identified a signature of admixture that suggests genetic contributions from two hypothetical ancestral genetic lineages for both types of markers, and the minimum-spanning haplotype network showed low differentiation in minor haplotypes from the most common haplotype with the most common haplotype occurring in all the 16 districts. A lack of genetic differentiation indicates unrestricted migrations between populations. This information will contribute to the design of BLB control strategies.

8.
Front Plant Sci ; 13: 846989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620696

RESUMEN

Viruses of the genus Badnavirus (family Caulimoviridae) are double-stranded DNA-reverse transcribing (dsDNA-RT) plant viruses and have emerged as serious pathogens of tropical and temperate crops globally. Endogenous badnaviral sequences are found integrated in the genomes of several economically important plant species. Infection due to activation of replication-competent integrated copies of the genera Badnavirus, Petuvirus and Cavemovirus has been described. Such endogenous badnaviral elements pose challenges to the development of nucleic acid-based diagnostic methods for episomal virus infections and decisions on health certification for international movement of germplasm and seed. One major food security crop affected is yam (Dioscorea spp.). A diverse range of Dioscorea bacilliform viruses (DBVs), and endogenous DBV (eDBV) sequences have been found to be widespread in yams cultivated in West Africa and other parts of the world. This study outlines the development of multiplex PCR-dependent denaturing gradient gel electrophoresis (PCR-DGGE) to assist in the detection and analysis of eDBVs, through the example of analysing yam germplasm from Nigeria and Ghana. Primers targeting the three most prevalent DBV monophyletic species groups in West Africa were designed to improve DGGE resolution of complex eDBV sequence fingerprints. Multiplex PCR-DGGE with the addition of a tailor-made DGGE sequence marker enables rapid comparison of endogenous badnaviral sequence diversity across germplasm, as illustrated in this study for eDBV diversity in yam.

9.
Mob DNA ; 13(1): 12, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440097

RESUMEN

BACKGROUND: Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. RESULTS: This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. CONCLUSION: This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex.

10.
Methods Mol Biol ; 2443: 211-232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037208

RESUMEN

Next-generation sequencing (NGS) technologies can generate billions of reads in a single sequencing run. However, with such high-throughput comes quality issues which have to be addressed before undertaking downstream analysis. Quality control on short reads is usually performed at default settings due to a lack of in-depth understanding of a particular software's parameters and their effect if changed on the output. Here we demonstrate how to optimize read trimming using Trimmomatic. We highlight the benefits of trimming by comparing the quality of transcripts assembled using trimmed and untrimmed reads.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Control de Calidad , RNA-Seq , Secuenciación del Exoma
11.
Insects ; 12(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34821848

RESUMEN

Bean leaf beetles (Ootheca spp.) (Insecta: Coleoptera: Chrysomelidae) are one of Africa's most destructive pests of common bean and other leguminous crops. The beetles are widely distributed in Africa where they are estimated to cause annual crop yield losses of 116,400 tons of crop yields in sub-Saharan Africa. Despite their importance, little is known about the distribution, relative abundance and damage caused by bean leaf beetles in Uganda. As a result, the development of effective management methods has been hampered. We conducted surveys in six key Ugandan agro-ecological zones to determine the species distribution and relative abundance of bean leaf beetles. Findings indicate that leaf beetles belonging to 12 genera are present, including members of the genera Afrophthalma Medvedev, 1980, Buphonella Jacoby, 1903, Chrysochrus Chevrolat in Dejean, 1836, Diacantha Dejean, 1845, Exosoma Jacoby, 1903, Lamprocopa Hincks, 1949, Lema Fabricius, 1798, Nisotra Baly, 1864, Neobarombiella Bolz and Wagner, 2012, Ootheca Dejean, 1935, Parasbecesta Laboissière, 1940, and Plagiodera Dejean, 1835. We identified only three species belonging to the genus Ootheca: O. mutabilis, O. proteus, and O. orientalis. Seventy percent of all the beetles collected were O. mutabilis and these were present in all agro-ecological zones studied. The Northern Moist Farmlands (21.9%), West Nile Farmlands (12.9%), Central Wooded Savanna (4.4%) and Southern and Eastern Lake Kyoga Basin (1.4%) were the only agro-ecological zones where O. proteus was found. Only one specimen of O. orientalis was found at a single site in the Central Wooded Savanna. The Northern Moist Farmlands had a significantly (p < 0.05) higher bean leaf beetle density than the West Nile Farmlands and Southwestern Highlands. Similarly, the Northern Moist Farmlands had the highest beetle foliar damage per plant (1.15 ± 0.05), while the Southwestern Highlands had the lowest (0.03 ± 0.02). We provide the first information on Ootheca species distribution, abundance and damage in Uganda. Our findings provide a foundation for assessing the importance of Ootheca spp. as common bean pests in Uganda.

12.
PLoS Pathog ; 17(11): e1010120, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843593

RESUMEN

Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Halomonadaceae/fisiología , Hemípteros/microbiología , Lisina/metabolismo , Rickettsia/fisiología , Simbiosis , Animales , Hemípteros/genética , Hemípteros/crecimiento & desarrollo , Lisina/genética
13.
J Pest Sci (2004) ; 94(4): 1307-1330, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720787

RESUMEN

Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3' barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10340-021-01355-6.

14.
Cells ; 10(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34359870

RESUMEN

Begomoviruses cause substantial losses to agricultural production, especially in tropical and subtropical regions, and are exclusively transmitted by members of the whitefly Bemisia tabaci species complex. However, the molecular mechanisms underlying the transmission of begomoviruses by their whitefly vector are not clear. In this study, we found that B. tabaci vesicle-associated membrane protein 2 (BtVAMP2) interacts with the coat protein (CP) of tomato yellow leaf curl virus (TYLCV), an emergent begomovirus that seriously impacts tomato production globally. After infection with TYLCV, the transcription of BtVAMP2 was increased. When the BtVAMP2 protein was blocked by feeding with a specific BtVAMP2 antibody, the quantity of TYLCV in B. tabaci whole body was significantly reduced. BtVAMP2 was found to be conserved among the B. tabaci species complex and also interacts with the CP of Sri Lankan cassava mosaic virus (SLCMV). When feeding with BtVAMP2 antibody, the acquisition quantity of SLCMV in whitefly whole body was also decreased significantly. Overall, our results demonstrate that BtVAMP2 interacts with the CP of begomoviruses and promotes their acquisition by whitefly.


Asunto(s)
Begomovirus/fisiología , Hemípteros/metabolismo , Hemípteros/virología , Proteínas de Insectos/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de Insectos/química , Unión Proteica , Transcripción Genética , Proteína 2 de Membrana Asociada a Vesículas/química
15.
Insects ; 12(3)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804645

RESUMEN

In East Africa, the prevalent Bemisia tabaci whiteflies on the food security crop cassava are classified as sub-Saharan Africa (SSA) species. Economically damaging cassava whitefly populations were associated with the SSA2 species in the 1990s, but more recently, it has been to SSA1 species. To investigate whether biological traits (number of first instar nymphs, emerged adults, proportion of females in progeny and development time) of the cassava whitefly species are significant drivers of the observed field abundance, our study determined the development of SSA1 sub-group (SG) 1 (5 populations), SG2 (5 populations), SG3 (1 population) and SSA2 (1 population) on cassava and eggplant under laboratory conditions. SSA1-(SG1-SG2) and SSA2 populations' development traits were similar. Regardless of the host plant, SSA1-SG2 populations had the highest number of first instar nymphs (60.6 ± 3.4) and emerged adults (50.9 ± 3.6), followed by SSA1-SG1 (55.5 ± 3.2 and 44.6 ± 3.3), SSA2 (45.8 ± 5.7 and 32.6 ± 5.1) and the lowest were SSA1-SG3 (34.2 ± 6.1 and 32.0 ± 7.1) populations. SSA1-SG3 population had the shortest egg-adult emergence development time (26.7 days), followed by SSA1-SG1 (29.1 days), SSA1-SG2 (29.6 days) and SSA2 (32.2 days). Regardless of the whitefly population, development time was significantly shorter on eggplant (25.1 ± 0.9 days) than cassava (34.6 ± 1.0 days). These results support that SSA1-(SG1-SG2) and SSA2 B. tabaci can become highly abundant on cassava, with their species classification alone not correlating with observed abundance and prevalence.

16.
Evol Appl ; 14(3): 807-820, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767754

RESUMEN

The whitefly Bemisia tabaci is a closely related group of >35 cryptic species that feed on the phloem sap of a broad range of host plants. Species in the complex differ in their host-range breadth, but the mechanisms involved remain poorly understood. We investigated, therefore, how six different B. tabaci species cope with the environmental unpredictability presented by a set of four common and novel host plants. Behavioral studies indicated large differences in performances on the four hosts and putative specialization of one of the species to cassava plants. Transcriptomic analyses revealed two main insights. First, a large set of genes involved in metabolism (>85%) showed differences in expression between the six species, and each species could be characterized by its own unique expression pattern of metabolic genes. However, within species, these genes were constitutively expressed, with a low level of environmental responsiveness (i.e., to host change). Second, within each species, sets of genes mainly associated with the super-pathways "environmental information processing" and "organismal systems" responded to the host switching events. These included genes encoding for proteins involved in sugar homeostasis, signal transduction, membrane transport, and immune, endocrine, sensory and digestive responses. Our findings suggested that the six B. tabaci species can be divided into four performance/transcriptomic "Types" and that polyphagy can be achieved in multiple ways. However, polyphagy level is determined by the specific identity of the metabolic genes/pathways that are enriched and overexpressed in each species (the species' individual metabolic "tool kit").

17.
Mol Plant Pathol ; 22(3): 382-389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471956

RESUMEN

Plant viruses typically have highly condensed genomes, yet the plant-pathogenic viruses Cassava brown streak virus, Ugandan cassava brown streak virus, and Euphorbia ringspot virus are unusual in encoding an enzyme not yet found in any other virus, the "house-cleaning" enzyme inosine triphosphatase. Inosine triphosphatases (ITPases) are highly conserved enzymes that occur in all kingdoms of life and perform a house-cleaning function by hydrolysing the noncanonical nucleotide inosine triphosphate to inosine monophosphate. The ITPases encoded by cassava brown streak virus and Ugandan cassava brown streak virus have been characterized biochemically and are shown to have typical ITPase activity. However, their biological role in virus infection has yet to be elucidated. Here we review what is known of viral-encoded ITPases and speculate on potential roles in infection with the aim of generating a greater understanding of cassava brown streak viruses, a group of the world's most devastating viruses.


Asunto(s)
Manihot/virología , Enfermedades de las Plantas/virología , Potyviridae/enzimología , Pirofosfatasas/metabolismo , Potyviridae/genética , Pirofosfatasas/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Inosina Trifosfatasa
18.
Insect Sci ; 28(6): 1553-1566, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33146464

RESUMEN

In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.


Asunto(s)
Hemípteros , Polimorfismo de Nucleótido Simple , África del Sur del Sahara , Animales , Genoma de los Insectos , Genoma Mitocondrial , Hemípteros/clasificación , Hemípteros/genética , Manihot , Filogenia , Enfermedades de las Plantas
19.
Sci Rep ; 10(1): 22049, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328547

RESUMEN

Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990's there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.


Asunto(s)
Aclimatación , Begomovirus , Cambio Climático , Hemípteros/fisiología , Manihot , Enfermedades de las Plantas , Animales , Manihot/parasitología , Manihot/virología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Uganda
20.
Sci Rep ; 10(1): 19633, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184360

RESUMEN

Maize streak virus disease (MSVD), caused by Maize streak virus (MSV; genus Mastrevirus), is one of the most severe and widespread viral diseases that adversely reduces maize yield and threatens food security in Africa. An effective control and management of MSVD requires robust and sensitive diagnostic tests capable of rapid detection of MSV. In this study, a loop-mediated isothermal amplification (LAMP) assay was designed for the specific detection of MSV. This test has shown to be highly specific and reproducible and able to detect MSV in as little as 10 fg/µl of purified genomic DNA obtained from a MSV-infected maize plant, a sensitivity 105 times higher to that obtained with polymerase chain reaction (PCR) in current general use. The high degree of sequence identity between Zambian and other African MSV isolates indicate that this LAMP assay can be used for detecting MSV in maize samples from any region in Africa. Furthermore, this assay can be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories across Africa strengthening diagnostic capacity in countries dealing with MSD.


Asunto(s)
ADN Viral/análisis , Genoma Viral , Virus de la Veta de Maíz/clasificación , Virus de la Veta de Maíz/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/virología , Zea mays/virología , África , Virus de la Veta de Maíz/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA