RESUMEN
Parkinson's disease (PD) is one of the most common neurodegenerative diseases after Alzheimer's disease (AD), afflicting adults above the age of sixty irrespective of gender, race, ethnicity, and social status. PD is characterized by motor dysfunctions, displaying resting tremor, rigidity, bradykinesia, and postural imbalance. Non-motor symptoms, including rapid eye movement (REM) behavior disorder, constipation, and loss of sense of smell, typically occur many years before the appearance of the PD motor symptoms that lead to a diagnosis. The loss of dopaminergic neurons in the substantia nigra, which leads to the motor symptoms seen in PD, is associated with the deposition of aggregated, misfolded α-Synuclein (α-Syn, SNCA) proteins forming Lewy Bodies. Additionally, dysregulation of miRNA (a short form of mRNA) may contribute to the developing pathophysiology in PD and other diseases such as cancer. Overexpression of α-Syn and miRNA in human samples has been found in PD, AD, and dementia. Therefore, evaluating these molecules in urine, present either in the free form or in association with extracellular vesicles of biological fluids, may lead to early biomarkers for clinical diagnosis. Collection of urine is non-invasive and thus beneficial, particularly in geriatric populations, for biomarker analysis. Considering the expression and function of α-Syn and miRNA, we predict that they can be used as early biomarkers in the diagnosis and prognosis of neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Parkinson , Anciano , Biomarcadores , Humanos , MicroARNs/genética , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/orinaRESUMEN
A six-month double-blind, placebo-controlled randomized study was conducted to ascertain whether low-dose daily niacin supplementation would improve motor symptoms in Parkinson's disease (PD) patients. A total of 47 PD patients were assigned to receive low-dose niacin or a placebo. At the end of the double-blind phase, all participants received open-label niacin for the next six months. All patients were evaluated at baseline, after six months, and after one year of treatment. The primary outcome measure was the Unified Parkinson's Disease Rating Scale III (UPDRS III) scores. Secondary outcome measures were depression, sleep quality, mental flexibility and cognition, and physical fatigue. Niacin treatment was well-tolerated by forty-five subjects. The mean [95% CI] change in UPDRS III scores at six months of placebo was -0.05 [95% CI, -2.4 to 2.32], and niacin was -1.06 [95% CI, -3.68 to 1.57]. From six to twelve months when both groups received open-label niacin supplementation, the average UPDRS III scores significantly decreased for the placebo group by 4.58 [95% CI, -0.85 to 8.30] and the niacin group by 4.63 [95% CI, 1.42 to 7.83] points. Low-dose niacin supplementation is a well-tolerated adjunct therapy and may improve motor function in PD when taken over a longer period.
RESUMEN
We previously reported that individuals with Parkinson's disease (PD) present with lower vitamin B3 levels compared to controls. It may be related to carbidopa interaction, defective tryptophan metabolism, and stresses of night sleep disorder. Vitamin B3 is the energy source for all cells by producing NAD+ and NADP+ in redox reactions of oxidative phosphorylation. Thus, some symptoms of PD such as fatigue, sleep dysfunction, and mood changes may be related to the deficiency of vitamin B3. Here, we conducted an effectiveness trial to determine the effect of 12 months of low-dose niacin (a vitamin B3 derivative) enhancement in PD individuals. An average of 9 ± 6-point improvement in the Unified Parkinson's Disease Rating Scale (UPDRS) III (motor) score was observed after 12 months of daily niacin compared to the expected decline in score (effect size = 0.78, 95% CI = 7-11). Additionally, secondary outcome measures improved. Notably, handwriting size increased, fatigue perception decreased, mood improved, frontal beta rhythm during quiet stance increased, and stance postural sway amplitude and range of acceleration decreased. Set shifting, however, as measured by the Trail Making-B test, worsened from 66 to 96 s. Other measures did not change after 12 months, but it is not clear whether this represents a positive benefit of the vitamin. For example, while the quality of night sleep remained the same, there was a trend towards a decrease in the frequency of awakening episodes. These results suggest that niacin enhancement has the potential to maintain or improve quality of life in PD and slow disease progression.
RESUMEN
Dysbiosis is implicated by many studies in the pathogenesis of Parkinson's disease (PD). Advances in sequencing technology and computing have resulted in confounding data regarding pathogenic bacterial profiles in conditions such as PD. Changes in the microbiome with reductions in short-chain fatty acid (SCFA)-producing bacteria and increases in endotoxin-producing bacteria likely contribute to the pathogenesis of PD. GPR109A, a G-protein coupled receptor found on the surface of the intestinal epithelium and immune cells, plays a key role in controlling intestinal permeability and the inflammatory cascade. The absence of GPR109A receptors is associated with decreased concentration of tight junction proteins, leading to increased intestinal permeability and susceptibility to inflammation. In inflammatory states, butyrate acts via GPR109A to increase concentrations of tight junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated in PD by dopaminergic medications. Niacin supplementation has been shown to shift macrophage polarization from pro-inflammatory to an anti-inflammatory profile. Niacin and butyrate, promising nutrients and unique ligands for the G protein-coupled receptor GPR109A, are reviewed in this paper in detail.
Asunto(s)
Butiratos/uso terapéutico , Suplementos Dietéticos , Disbiosis/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Niacina/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Butiratos/metabolismo , Disbiosis/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Niacina/metabolismo , Enfermedad de Parkinson/metabolismo , Permeabilidad/efectos de los fármacosRESUMEN
In this study, we used macrophage RAW264.7 cells to elucidate the molecular mechanism underlying the anti-inflammatory actions of niacin. Anti-inflammatory actions of niacin and a possible role of its receptor GPR109A have been studied previously. However, the precise molecular mechanism of niacin's action in reducing inflammation through GPR109A is unknown. Here we observed that niacin reduced the translocation of phosphorylated nuclear kappa B (p-NF-κB) induced by lipopolysaccharide (LPS) in the nucleus of RAW264.7 cells. The reduction in the nuclear translocation in turn decreased the expression of pro-inflammatory cytokines IL-1ß, IL-6 in RAW264.7 cells. We observed a decrease in the nuclear translocation of p-NF-κB and the expression of inflammatory cytokines after knockdown of GPR109A in RAW264.7 cells. Our results suggest that these molecular actions of niacin are mediated via its receptor GPR109A (also known as HCAR2) by controlling the translocation of p-NF-κB to the nucleus. Overall, our findings suggest that niacin treatment may have potential in reducing inflammation by targeting GPR109A.
Asunto(s)
Antiinflamatorios/farmacología , Niacina/farmacología , Enfermedad de Parkinson/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Niacina/sangre , Niacina/uso terapéutico , Enfermedad de Parkinson/metabolismo , Células RAW 264.7 , Receptores Acoplados a Proteínas G/sangre , Receptores Acoplados a Proteínas G/genéticaRESUMEN
Leptin administration into the hindbrain, and specifically the nucleus of the solitary tract, increases phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a marker of leptin receptor activation, in hypothalamic nuclei known to express leptin receptors. The ventromedial nucleus of the hypothalamus (VMH) shows the greatest response, with a threefold increase in pSTAT3. This experiment tested the importance of VMH leptin receptor-expressing neurons in mediating weight loss caused by fourth ventricle (4V) leptin infusion. Male Sprague-Dawley rats received bilateral VMH 75-nL injections of 260 ng/µL of leptin-conjugated saporin (Lep-Sap) or blank-saporin (Blk-Sap). After 23 days they were fitted with 4V infusion cannulas and 1 wk later adapted to housing in a calorimeter before they were infused with 0.9 µg leptin/day for 14 days. There was no effect of VMH Lep-Sap on weight gain or glucose clearance before leptin infusion. Leptin inhibited food intake and respiratory exchange ratio in Blk-Sap but not Lep-Sap rats. Leptin had no effect on energy expenditure or brown adipose tissue temperature of either group. Inguinal and epididymal fat were significantly reduced in leptin-treated Blk-Sap rats, but the response was greatly attenuated in Lep-Sap rats. VMH pSTAT3 was increased in leptin-treated Blk-Sap but not Lep-Sap rats. These results support the concept that leptin-induced weight loss results from an integrated response across different brain areas. They also support previous reports that VMH leptin receptors do not play a significant role in maintaining energy balance in basal conditions but limit weight gain during positive energy balance.