RESUMEN
Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.
Asunto(s)
Ecología , Microfluídica , Animales , Microfluídica/métodosRESUMEN
DNA is a component of biofilms, but the triggers of DNA release during biofilm formation and how DNA contributes to biofilm development are poorly investigated. One key mechanism involved in DNA release is explosive cell lysis, which is a consequence of prophage induction. In this article, the role of explosive cell lysis in biofilm formation was investigated in the opportunistic human pathogen Burkholderia cenocepacia H111 (H111). Biofilm streamers, flow-suspended biofilm filaments, were used as a biofilm model in this study, as DNA is an essential component of their matrix. H111 contains three prophages on chromosome 1 of its genome, and the involvement of each prophage in causing explosive cell lysis of the host and subsequent DNA and membrane vesicle (MV) release, as well as their contribution to streamer formation, were studied in the presence and absence of genotoxic stress. The results show that two of the three prophages of H111 encode functional lytic prophages that can be induced by genotoxic stress and their activation causes DNA and MVs release by explosive cell lysis. Furthermore, it is shown that the released DNA enables the strain to develop biofilm streamers, and streamer formation can be enhanced by genotoxic stress. Overall, this study demonstrates the involvement of prophages in streamer formation and uncovers an often-overlooked problem with the use of antibiotics that trigger the bacterial SOS response for the treatment of bacterial infections.
Asunto(s)
Burkholderia cenocepacia , ADN Ambiental , Humanos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , ADN , Daño del ADN , Dispositivos Laboratorio en un ChipRESUMEN
In microbiology, accessing single-cell information within large populations is pivotal. Here we introduce bio-sCAPA, a technique for patterning bacterial cells in defined geometric arrangements and monitoring their growth in various nutrient environments. We demonstrate bio-sCAPA with a study of subpopulations of antibiotic-tolerant bacteria, known as persister cells, which can survive exposure to high doses of antibiotics despite lacking any genetic resistance to the drug. Persister cells are associated with chronic and relapsing infections, yet are difficult to study due in part to a lack of scalable, single-cell characterisation methods. As >105 cells can be patterned on each template, and multiple templates can be patterned in parallel, bio-sCAPA allows for very rare population phenotypes to be monitored with single-cell precision across various environmental conditions. Using bio-sCAPA, we analysed the phenotypic characteristics of single Staphylococcus aureus cells tolerant to flucloxacillin and rifampicin killing. We find that antibiotic-tolerant S. aureus cells do not display significant heterogeneity in growth rate and are instead characterised by prolonged lag-time phenotypes alone.
Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus/genética , Bacterias , Infecciones Estafilocócicas/tratamiento farmacológico , FloxacilinaRESUMEN
Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (Ï) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in Ï, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm Ï is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.
Asunto(s)
Biopelículas , Matriz Extracelular , VidrioRESUMEN
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
RESUMEN
Bioaggregates are condensed porous materials comprising microbes, organic and inorganic matters, and water. They are commonly found in natural and engineered porous media and often cause clogging. Despite their importance, the formation mechanism of bioaggregates in porous media systems is largely unknown. Through microfluidic experiments and direct numerical simulations of fluid flow, we show that the rapid bioaggregation is driven by the interplay of the viscoelastic nature of biomass and hydrodynamic conditions at pore throats. At an early stage, unique flow structures around a pore throat promote the biomass attachment at the throat. Then, the attached biomass fluidizes when the shear stress at the partially clogged pore throat reaches a critical value. After the fluidization, the biomass is displaced and accumulated in the expansion region of throats forming bioaggregates. We further find that such criticality in shear stress triggers morphological changes in bioaggregates from rounded- to streamer-like shapes. This knowledge was used to control the clogging of throats by tuning the flow conditions: When the shear stress at the throat exceeded the critical value, clogging was prevented. The bioaggregation process did not depend on the detailed pore-throat geometry, as we reproduced the same dynamics in various pore-throat geometries. This study demonstrates that pore-throat structures, which are ubiquitous in porous media systems, induce bioaggregation and can lead to abrupt disruptions in flow.
Asunto(s)
Biopelículas , Faringe , Microfluídica , CuelloRESUMEN
The functioning of natural and engineered porous media, like soils and filters, depends in many cases on the interplay between biochemical processes and hydrodynamics. In such complex environments, microorganisms often form surface-attached communities known as biofilms. Biofilms can take the shape of clusters, which alter the distribution of fluid flow velocities within the porous medium, subsequently influencing biofilm growth. Despite numerous experimental and numerical efforts, the control of the biofilm clustering process and the resulting heterogeneity in biofilm permeability is not well understood, limiting our predictive abilities for biofilm-porous medium systems. Here, we use a quasi-2D experimental model of a porous medium to characterize biofilm growth dynamics for different pore sizes and flow rates. We present a method to obtain the time-resolved biofilm permeability field from experimental images and use the obtained permeability field to compute the flow field through a numerical model. We observe a biofilm cluster size distribution characterized by a spectrum slope evolving in time between -2 and -1, a fundamental measure that can be used to create spatio-temporal distributions of biofilm clusters for upscaled models. We find a previously undescribed biofilm permeability distribution, which can be used to stochastically generate permeability fields within biofilms. An increase in velocity variance for a decrease in physical heterogeneity shows that the bioclogged porous medium behaves differently than expected from studies on heterogeneity in abiotic porous media.
Asunto(s)
Hidrodinámica , Modelos Teóricos , Porosidad , Biopelículas , MorfogénesisRESUMEN
Bacterial biofilms are communities living in a matrix consisting of self-produced, hydrated extracellular polymeric substances. Most microorganisms adopt the biofilm lifestyle since it protects by conferring resistance to antibiotics and physico-chemical stress factors. Consequently, mechanical removal is often necessary but rendered difficult by the biofilm's complex, viscoelastic response, and adhesive properties. Overall, the mechanical behaviour of biofilms also plays a role in the spreading, dispersal and subsequent colonization of new surfaces. Therefore, the characterization of the mechanical properties of biofilms plays a crucial role in controlling and combating biofilms in industrial and medical environments. We performed in situ shear rheological measurements of Bacillus subtilis biofilms grown between the plates of a rotational rheometer under well-controlled conditions relevant to many biofilm habitats. We investigated how the mechanical history preceding rheological measurements influenced biofilm mechanics and compared these results to the techniques commonly used in the literature. We also compare our results to measurements using interfacial rheology on bacterial pellicles formed at the air-water interface. This work aims to help understand how different growth and measurement conditions contribute to the large variability of mechanical properties reported in the literature and provide a new tool for the rigorous characterization of matrix components and biofilms.
RESUMEN
Biofilms are biological viscoelastic gels composed of bacterial cells embedded in a self-secreted polymeric extracellular matrix (ECM). In environmental settings, such as in the rhizosphere and phyllosphere, biofilm colonization occurs at the solid-air interface. The biofilms' ability to colonize and expand over these surfaces depends on the formation of osmotic gradients and ECM viscoelastic properties. In this work, we study the influence of biofilm ECM components on its viscoelasticity and expansion, using the model organism Bacillus subtilis and deletion mutants of its three major ECM components, TasA, EPS and BslA. Using a multi-scale approach, we quantified macro-scale viscoelasticity and expansion dynamics. Furthermore, we used a microsphere assay to visualize the micro-scale expansion patterns. We find that the viscoelastic phase angle Φ is likely the best viscoelastic parameter correlating to biofilm expansion dynamics. Moreover, we quantify the sensitivity of the biofilm to changes in substrate water potential as a function of ECM composition. Finally, we find that the deletion of ECM components significantly increases the coherence of micro-scale colony expansion patterns. These results demonstrate the influence of ECM viscoelasticity and substrate water potential on the expansion of biofilm colonies on wet surfaces at the air-solid interface, commonly found in natural environments.
RESUMEN
Bacterial biofilms are found in several environmental and industrial porous media, including soils and filtration membranes. Biofilms grow under certain flow conditions and can clog pores, thereby redirecting the local fluid flow. The ability of biofilms to clog pores, the so-called bioclogging, can have a tremendous effect on the local permeability of the porous medium, creating a pressure buildup in the system, and impacting the mass flow through it. To understand the interplay between biofilm growth and fluid flow under different physical conditions (e.g., at different flow velocities and pore sizes), in the present study, a microfluidic platform is developed to visualize biofilm development using a microscope under externally-imposed, controlled physical conditions. The biofilm-induced pressure buildup in the porous medium can be measured simultaneously using pressure sensors and, later, correlated with the surface coverage of the biofilm. The presented platform provides a baseline for a systematic approach to investigate bioclogging caused by biofilms in porous media under flow conditions and can be adapted to studying environmental isolates or multispecies biofilms.
Asunto(s)
Biopelículas , Microfluídica , Porosidad , Bacterias , PermeabilidadRESUMEN
Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm-porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media.
Asunto(s)
Bacillus subtilis , Biopelículas , Estrés Mecánico , Bacillus subtilis/crecimiento & desarrollo , Medios de Cultivo , Modelos Teóricos , PorosidadRESUMEN
Biofilms, bacterial communities of cells encased by a self-produced matrix, exhibit a variety of three-dimensional structures. Specifically, channel networks formed within the bulk of the biofilm have been identified to play an important role in the colonies' viability by promoting the transport of nutrients and chemicals. Here, we study channel formation and focus on the role of the adhesion of the biofilm matrix to the substrate in Pseudomonas aeruginosa biofilms grown under constant flow in microfluidic channels. We perform phase contrast and confocal laser scanning microscopy to examine the development of the biofilm structure as a function of the substrates' surface energy. The formation of the wrinkles and folds is triggered by a mechanical buckling instability, controlled by biofilm growth rate and the film's adhesion to the substrate. The three-dimensional folding gives rise to hollow channels that rapidly increase the effective volume occupied by the biofilm and facilitate bacterial movement inside them. The experiments and analysis on mechanical instabilities for the relevant case of a bacterial biofilm grown during flow enable us to predict and control the biofilm morphology.
Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Microscopía ConfocalRESUMEN
Biomolecular condensates require suitable control of material properties for their function. Here we apply Differential Dynamic Microscopy (DDM) to probe the material properties of an in vitro model of processing bodies consisting of out-of-equilibrium condensates formed by the DEAD-box ATPase Dhh1 in the presence of ATP and RNA. By applying this single-droplet technique we show that condensates within the same population exhibit a distribution of material properties, which are regulated on several levels. Removal of the low-complexity domains (LCDs) of the protein decreases the fluidity of the condensates. Structured RNA leads to a larger fraction of dynamically arrested condensates with respect to unstructured polyuridylic acid (polyU). Promotion of the enzymatic ATPase activity of Dhh1 reduces aging of the condensates and the formation of arrested structures, indicating that biochemical activity and material turnover can maintain fluid-like properties over time.
Asunto(s)
Condensados Biomoleculares , ARN , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN/genéticaRESUMEN
Biofilm formation is the most successful survival strategy for bacterial communities. In the biofilm lifestyle, bacteria embed themselves in a self-secreted matrix of extracellular polymeric substances (EPS), which acts as a shield against mechanical and chemical insults. When ambient flow is present, this viscoelastic scaffold can take a streamlined shape, forming biofilm filaments suspended in flow, called streamers. Streamers significantly disrupt the fluid flow by causing rapid clogging and affect transport in aquatic environments. Despite their relevance, the structural and rheological characterization of biofilm streamers is still at an early stage. In this work, we present a microfluidic platform that allows the reproducible growth of biofilm streamers in controlled physico-chemical conditions and the characterization of their biochemical composition, morphology, and rheology in situ. We employed isolated micropillars as nucleation sites for the growth of single biofilm streamers under the continuous flow of a diluted bacterial suspension. By combining fluorescent staining of the EPS components and epifluorescence microscopy, we were able to characterize the biochemical composition and morphology of the streamers. Additionally, we optimized a protocol to perform hydrodynamic stress tests in situ, by inducing controlled variations of the fluid shear stress exerted on the streamers by the flow. Thus, the reproducibility of the formation process and the testing protocol make it possible to perform several consistent experimental replicates that provide statistically significant information. By allowing the systematic investigation of the role of biochemical composition on the structure and rheology of streamers, this platform will advance our understanding of biofilm formation.
Asunto(s)
Biopelículas , Microfluídica , Bacterias , Hidrodinámica , Reproducibilidad de los Resultados , ReologíaRESUMEN
Across diverse habitats, bacteria are mainly found as biofilms, surface-attached communities embedded in a self-secreted matrix of extracellular polymeric substances (EPS), which enhance bacterial recalcitrance to antimicrobial treatment and mechanical stresses. In the presence of flow and geometric constraints such as corners or constrictions, biofilms can take the form of long, suspended filaments (streamers), which bear important consequences in industrial and clinical settings by causing clogging and fouling. The formation of streamers is thought to be driven by the viscoelastic nature of the biofilm matrix. Yet, little is known about the structural composition of streamers and how it affects their mechanical properties. Here, using a microfluidic platform that allows growing and precisely examining biofilm streamers, we show that extracellular DNA (eDNA) constitutes the backbone and is essential for the mechanical stability of Pseudomonas aeruginosa streamers. This finding is supported by the observations that DNA-degrading enzymes prevent the formation of streamers and clear already formed ones and that the antibiotic ciprofloxacin promotes their formation by increasing the release of eDNA. Furthermore, using mutants for the production of the exopolysaccharide Pel, an important component of P. aeruginosa EPS, we reveal an concurring role of Pel in tuning the mechanical properties of the streamers. Taken together, these results highlight the importance of eDNA and of its interplay with Pel in determining the mechanical properties of P. aeruginosa streamers and suggest that targeting the composition of streamers can be an effective approach to control the formation of these biofilm structures.
Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Bacterias/genética , ADN Bacteriano/genética , Polisacáridos Bacterianos , Pseudomonas aeruginosa/genéticaRESUMEN
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Asunto(s)
Biopelículas , Prótesis e Implantes , Bacterias , Humanos , Prótesis e Implantes/efectos adversosRESUMEN
Controlled patterning of microorganisms into defined spatial arrangements offers unique possibilities for a broad range of biological applications, including studies of microbial physiology and interactions. At the simplest level, accurate spatial patterning of microorganisms would enable reliable, long-term imaging of large numbers of individual cells and transform the ability to quantitatively study distance-dependent microbe-microbe interactions. More uniquely, coupling accurate spatial patterning and full control over environmental conditions, as offered by microfluidic technology, would provide a powerful and versatile platform for single-cell studies in microbial ecology. This paper presents a microfluidic platform to produce versatile and user-defined patterns of microorganisms within a microfluidic channel, allowing complete optical access for long-term, high-throughput monitoring. This new microfluidic technology is based on capillarity-assisted particle assembly and exploits the capillary forces arising from the controlled motion of an evaporating suspension inside a microfluidic channel to deposit individual microsized objects in an array of traps microfabricated onto a polydimethylsiloxane (PDMS) substrate. Sequential depositions generate the desired spatial layout of single or multiple types of micro-sized objects, dictated solely by the geometry of the traps and the filling sequence. The platform has been calibrated using colloidal particles of different dimensions and materials: it has proven to be a powerful tool to generate diverse colloidal patterns and perform surface functionalization of trapped particles. Furthermore, the platform was tested on microbial cells, using Escherichia coli cells as a model bacterium. Thousands of individual cells were patterned on the surface, and their growth was monitored over time. In this platform, the coupling of single-cell deposition and microfluidic technology allows both geometric patterning of microorganisms and precise control of environmental conditions. It thus opens a window into the physiology of single microbes and the ecology of microbe-microbe interactions, as shown by preliminary experiments.
Asunto(s)
Técnicas Analíticas Microfluídicas , Acción Capilar , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodosRESUMEN
Microfluidics is a relatively novel interdisciplinary research area with broad applications in chemistry, physics, material science, and biology. Despite the rapid growth of the field, students' exposure to microfluidic technologies is still limited and often insufficient to appreciate the advantages over other commonly used technologies. To this end, we designed a five-day course, "Microfluidics for microbial ecology," in which students with very different backgrounds learn the basics of microfluidic technologies and sample a range of applications in microbial ecology. The course was created for Master and Ph.D. students interested in applying microfluidics to their research and, therefore, followed an application-oriented approach. The presentation of critical aspects of fluid flow phenomena at the microscale and an outline of the advantages and constraints of the technology provide students with the background to design and perform microfluidics-based experiments. In order to improve the effectiveness of learning in a class with diverse interests and backgrounds, two active learning exercises were implemented. The first comprised the design of an individualized microfluidics experiment in parallel with the lectures: students were guided to apply each module to their personalized application and discuss it in groups. The second was a group experimental activity, in which students jointly set up, performed, analyzed, and presented a microfluidics-based experiment. Given the multidisciplinary teaching context, the course was able to foster common conceptual ground and promote discussion among students. This application-oriented approach built upon experimental activities and in-class discussion is well suited to promote learning in a technology-related subject such as microfluidics.
RESUMEN
Colloidal patterning enables the placement of a wide range of materials into prescribed spatial arrangements, as required in a variety of applications, including micro- and nano-electronics, sensing, and plasmonics. Directed colloidal assembly methods, which exploit external forces to place particles with high yield and great accuracy, are particularly powerful. However, currently available techniques require specialized equipment, which limits their applicability. Here, we present a microfluidic platform to produce versatile colloidal patterns within a microchannel, based on sequential capillarity-assisted particle assembly (sCAPA). This new microfluidic technology exploits the capillary forces resulting from the controlled motion of an evaporating droplet inside a microfluidic channel to deposit individual particles in an array of traps microfabricated onto a substrate. Sequential depositions allow the generation of a desired spatial layout of colloidal particles of single or multiple types, dictated solely by the geometry of the traps and the filling sequence. We show that the platform can be used to create a variety of patterns and that the microfluidic channel easily allows surface functionalization of trapped particles. By enabling colloidal patterning to be carried out in a controlled environment, exploiting equipment routinely used in microfluidics, we demonstrate an easy-to-build platform that can be implemented in microfluidics labs.
RESUMEN
The colonization of surfaces by bacteria is a widespread phenomenon with consequences on environmental processes and human health. While much is known about the molecular mechanisms of surface colonization, the influence of the physical environment remains poorly understood. Here we show that the colonization of non-planar surfaces by motile bacteria is largely controlled by flow. Using microfluidic experiments with Pseudomonas aeruginosa and Escherichia coli, we demonstrate that the velocity gradients created by a curved surface drive preferential attachment to specific regions of the collecting surface, namely the leeward side of cylinders and immediately downstream of apexes on corrugated surfaces, in stark contrast to where nonmotile cells attach. Attachment location and rate depend on the local hydrodynamics and, as revealed by a mathematical model benchmarked on the observations, on cell morphology and swimming traits. These results highlight the importance of flow on the magnitude and location of bacterial colonization of surfaces.