Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Nat Commun ; 15(1): 5574, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956430

RESUMEN

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.


Asunto(s)
Animales de Laboratorio , Guías como Asunto , Animales , Animales de Laboratorio/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Experimentación Animal/normas , Investigación Biomédica/normas
2.
EMBO Rep ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877170

RESUMEN

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.

3.
Cells ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891052

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Asunto(s)
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vectores Genéticos , Lentivirus/genética , Animales , Proteínas Ribosómicas/genética , Mutación/genética , Edición Génica/métodos
4.
J Neurosci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926089

RESUMEN

N-methyl-D-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de-novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons prepared from L825V/+ compared to +/+ mice. Peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSC) was not changed, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared to +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared to wild-type GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.Significance statement Variants in genes for subunits of N-methyl-D-aspartate receptors (NMDARs), a subtype of ionotropic glutamate receptors, are associated with neurodevelopmental disorders. Here we have generated a transgenic mouse model of a de-novo missense GRIN2B gene variant, identified in a patient with intellectual disability and autism, that introduces a single amino acid substitution (L825V) in the NMDAR GluN2B subunit. Di- and triheteromeric NMDARs containing the GluN2B(L825V) subunit have a reduced channel open probability. Synaptic NMDAR currents in neurons from heterozygous L825V/+ mice have accelerated deactivation and reduced ifenprodil sensitivity, suggesting synaptic loss of GluN2B function. L825V/+ mice show increased anxiety, impaired sensorimotor gating, and cognitive deficits, consistent with patient symptoms. Our study describes a clinically relevant mouse model of GRIN2B-related neurodevelopmental pathology.

5.
EMBO Rep ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769420

RESUMEN

Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.

6.
Commun Biol ; 7(1): 244, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424235

RESUMEN

The formation of hematopoietic cells relies on the chromatin remodeling activities of ISWI ATPase SMARCA5 (SNF2H) and its complexes. The Smarca5 null and conditional alleles have been used to study its functions in embryonic and organ development in mice. These mouse model phenotypes vary from embryonic lethality of constitutive knockout to less severe phenotypes observed in tissue-specific Smarca5 deletions, e.g., in the hematopoietic system. Here we show that, in a gene dosage-dependent manner, the hypomorphic allele of SMARCA5 (S5tg) can rescue not only the developmental arrest in hematopoiesis in the hCD2iCre model but also the lethal phenotypes associated with constitutive Smarca5 deletion or Vav1iCre-driven conditional knockout in hematopoietic progenitor cells. Interestingly, the latter model also provided evidence for the role of SMARCA5 expression level in hematopoietic stem cells, as the Vav1iCre S5tg animals accumulate stem and progenitor cells. Furthermore, their hematopoietic stem cells exhibited impaired lymphoid lineage entry and differentiation. This observation contrasts with the myeloid lineage which is developing without significant disturbances. Our findings indicate that animals with low expression of SMARCA5 exhibit normal embryonic development with altered lymphoid entry within the hematopoietic stem cell compartment.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/genética , Diferenciación Celular/genética , Adenosina Trifosfatasas/metabolismo
7.
Curr Protoc ; 4(2): e980, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385868

RESUMEN

The skeletal system mirrors several processes in the vertebrate body that impact developmental malfunctions, hormonal disbalance, malfunction of calcium metabolism and turn over, and inflammation processes such as arthrosis. X-ray micro computed tomography is a useful tool for 3D in situ evaluation of the skeletal system in a time-related manner, but results depend highly on resolution. Here, we provide the methodological background for a graduated evaluation from whole-body analysis of skeletal morphology and mineralization to high-resolution analysis of femoral and vertebral microstructure. We combine an expert-based evaluation with a machine-learning-based computational approach, including pre-setup analytical task lists. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo microCT scanning and skeletal analysis in mice Basic Protocol 2: Ex vivo high-resolution microCT scanning and microstructural analysis of the femur and L4 vertebra.


Asunto(s)
Calcinosis , Animales , Ratones , Microtomografía por Rayos X , Modelos Animales de Enfermedad , Fémur/diagnóstico por imagen , Vértebras Lumbares
8.
Hum Mol Genet ; 33(6): 491-500, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37971355

RESUMEN

Pathogenic variants in the highly conserved OVOL2 promoter region cause posterior polymorphous corneal dystrophy (PPCD) 1 by inducing an ectopic expression of the endothelial OVOL2 mRNA. Here we produced an allelic series of Ovol2 promoter mutations in the mouse model including the heterozygous c.-307T>C variant (RefSeq NM_021220.4) causing PPCD1 in humans. Despite the high evolutionary conservation of the Ovol2 promoter, only some alterations of its sequence had phenotypic consequences in mice. Four independent sequence variants in the distal part of the Ovol2 promoter had no significant effect on endothelial Ovol2 mRNA level or caused any ocular phenotype. In contrast, the mutation c.-307T>C resulted in increased Ovol2 expression in the corneal endothelium. However, only a small fraction of adult mice c.-307T>C heterozygotes developed ocular phenotypes such as irido-corneal adhesions, and corneal opacity. Interestingly, phenotypic penetrance was increased at embryonic stages. Notably, c.-307T>C mutation is located next to the Ovol1/Ovol2 transcription factor binding site. Mice carrying an allele with a deletion encompassing the Ovol2 binding site c.-307_-320del showed significant Ovol2 gene upregulation in the cornea endothelium and exhibited phenotypes similar to the c.-307T>C mutation. In conclusion, although the mutations c.-307T>C and -307_-320del lead to a comparably strong increase in endothelial Ovol2 expression as seen in PPCD1 patients, endothelial dystrophy was not observed in the mouse model, implicating species-specific differences in endothelial cell biology. Nonetheless, the emergence of dominant ocular phenotypes associated with Ovol2 promoter variants in mice implies a potential role of this gene in eye development and disease.


Asunto(s)
Distrofias Hereditarias de la Córnea , Adulto , Humanos , Animales , Ratones , Fenotipo , Distrofias Hereditarias de la Córnea/genética , Endotelio Corneal , Modelos Animales de Enfermedad , ARN Mensajero , Factores de Transcripción/genética
9.
J Vis Exp ; (200)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37929955

RESUMEN

This manuscript describes a battery of behavioral tests available to characterize Angelman syndrome (AS)-like phenotypes in an established murine model of AS. We use the rotarod learning paradigm, detailed gait analysis, and nest building test to detect and characterize animal motor impairments. We test animal emotionality in the open field and elevated plus maze tests, as well as the affect in the tail suspension test. When AS mice are tested in the open field test, the results should be interpreted with care, since motor dysfunctions influence mouse behavior in the maze and alter activity scores. The reproducibility and effectiveness of the presented behavioral tests has already been validated in several independent Uba3a mouse lines with different knockout variants, establishing this set of tests as an excellent validation tool in AS research. Models with the relevant construct and face validity will warrant further investigations to elucidate the pathophysiology of the disease and grant the development of causal treatments.


Asunto(s)
Síndrome de Angelman , Ratones , Animales , Síndrome de Angelman/genética , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados , Aprendizaje , Actividad Motora/fisiología , Conducta Animal/fisiología , Aprendizaje por Laberinto
10.
Nature ; 624(7992): 653-662, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37993717

RESUMEN

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.


Asunto(s)
Amelogénesis Imperfecta , Autoanticuerpos , Enfermedad Celíaca , Poliendocrinopatías Autoinmunes , Humanos , Amelogénesis Imperfecta/complicaciones , Amelogénesis Imperfecta/inmunología , Autoanticuerpos/inmunología , Enfermedad Celíaca/complicaciones , Enfermedad Celíaca/inmunología , Inmunoglobulina A/inmunología , Poliendocrinopatías Autoinmunes/complicaciones , Poliendocrinopatías Autoinmunes/inmunología , Proteínas/inmunología , Proteínas/metabolismo , Ameloblastos/metabolismo , Esmalte Dental/inmunología , Esmalte Dental/metabolismo , Proteína AIRE/deficiencia , Antígenos/inmunología , Antígenos/metabolismo , Intestinos/inmunología , Intestinos/metabolismo
11.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37533404

RESUMEN

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Asunto(s)
Síndrome de Barth , Ratones , Animales , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucólisis , Ácidos Grasos/metabolismo , Adenosina Trifosfato
13.
Mamm Genome ; 34(2): 107-122, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37326672

RESUMEN

Cardiovascular diseases cause a high mortality rate worldwide and represent a major burden for health care systems. Experimental rodent models play a central role in cardiovascular disease research by effectively simulating human cardiovascular diseases. Using mice, the International Mouse Phenotyping Consortium (IMPC) aims to target each protein-coding gene and phenotype multiple organ systems in single-gene knockout models by a global network of mouse clinics. In this review, we summarize the current advances of the IMPC in cardiac research and describe in detail the diagnostic requirements of high-throughput electrocardiography and transthoracic echocardiography capable of detecting cardiac arrhythmias and cardiomyopathies in mice. Beyond that, we are linking metabolism to the heart and describing phenotypes that emerge in a set of known genes, when knocked out in mice, such as the leptin receptor (Lepr), leptin (Lep), and Bardet-Biedl syndrome 5 (Bbs5). Furthermore, we are presenting not yet associated loss-of-function genes affecting both, metabolism and the cardiovascular system, such as the RING finger protein 10 (Rfn10), F-box protein 38 (Fbxo38), and Dipeptidyl peptidase 8 (Dpp8). These extensive high-throughput data from IMPC mice provide a promising opportunity to explore genetics causing metabolic heart disease with an important translational approach.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Ratones , Animales , Humanos , Ratones Noqueados , Enfermedades Cardiovasculares/genética , Técnicas de Inactivación de Genes , Fenotipo
14.
Mamm Genome ; 34(2): 180-199, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37294348

RESUMEN

Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.


Asunto(s)
Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Ratones , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos
15.
Sci Rep ; 13(1): 8573, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237091

RESUMEN

In most mammals and particularly in mice, chemical communication relies on the detection of ethologically relevant fitness-related cues from other individuals. In mice, urine is the primary source of these signals, so we employed proteomics and metabolomics to identify key components of chemical signalling. We show that there is a correspondence between urinary volatiles and proteins in the representation of genetic background, sex and environment in two house mouse subspecies Mus musculus musculus and M. m. domesticus. We found that environment has a strong influence upon proteomic and metabolomic variation and that volatile mixtures better represent males while females have surprisingly more sex-biased proteins. Using machine learning and combined-omics techniques, we identified mixtures of metabolites and proteins that are associated with biological features.


Asunto(s)
Proteínas , Proteómica , Masculino , Femenino , Ratones , Animales , Señales (Psicología) , Transducción de Señal , Variación Genética , Mamíferos
16.
Methods Mol Biol ; 2675: 297-308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258772

RESUMEN

Cancer cells depend on nucleotides for proliferation. Inhibition of nucleotide metabolism by antimetabolites is a well-established anticancer therapy. However, resistance and toxicity to antimetabolite treatments reduce their effectiveness. Here, we focus on the pyrimidine de novo synthesis pathway, which is crucial for cancer cell proliferation, yet its pharmacological targeting in cancer has been without much clinical success so far. Hence, it is important to understand how cancer cells cope with the insufficiency of this pathway. Here, we describe a procedure to prepare subcutaneous tumor model deficient in de novo pyrimidine synthesis. For examination of metabolic responses to de novo synthesis blockade in tumors, we propose application of MALDI imaging that allows spatially resolved examination of metabolic responses to de novo synthesis blockade in tumors.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Pirimidinas , Neoplasias/metabolismo , Nucleótidos , Análisis Espacial
17.
Nat Commun ; 14(1): 3092, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248239

RESUMEN

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Asunto(s)
Metabolismo Energético , Estudio de Asociación del Genoma Completo , Animales , Humanos , Peso Corporal , Metabolismo Energético/genética , Ferritinas/genética , Riñón , Hombre de Neandertal
18.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019475

RESUMEN

A subset of patients with retinitis pigmentosa (RP) carry mutations in several spliceosomal components including the PRPF8 protein. Here, we established two alleles of murine Prpf8 that genocopy or mimic aberrant PRPF8 found in RP patients-the substitution p.Tyr2334Asn and an extended protein variant p.Glu2331ValfsX15. Homozygous mice expressing the aberrant Prpf8 variants developed within the first 2 mo progressive atrophy of the cerebellum because of extensive granule cell loss, whereas other cerebellar cells remained unaffected. We further show that a subset of circRNAs were deregulated in the cerebellum of both Prpf8-RP mouse strains. To identify potential risk factors that sensitize the cerebellum for Prpf8 mutations, we monitored the expression of several splicing proteins during the first 8 wk. We observed down-regulation of all selected splicing proteins in the WT cerebellum, which coincided with neurodegeneration onset. The decrease in splicing protein expression was further pronounced in mouse strains expressing mutated Prpf8. Collectively, we propose a model where physiological reduction in spliceosomal components during postnatal tissue maturation sensitizes cells to the expression of aberrant Prpf8 and the subsequent deregulation of circRNAs triggers neuronal death.


Asunto(s)
Proteínas de Unión al ARN , Retinitis Pigmentosa , Animales , Ratones , Proteínas de Unión al ARN/genética , ARN Circular , Mutación , Cerebelo
19.
Cell Mol Life Sci ; 80(5): 135, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37119365

RESUMEN

Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteína ADAM17/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Citocinas/metabolismo , Modelos Estructurales
20.
Genes (Basel) ; 14(2)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36833213

RESUMEN

Stress responses are activated by the hypothalamic-pituitary-adrenal axis (HPA axis), culminating in the release of glucocorticoids. During prolonged periods of secretion of glucocorticoids or inappropriate behavioral responses to a stressor, pathologic conditions may occur. Increased glucocorticoid concentration is linked to generalized anxiety, and there are knowledge gaps regarding its regulation. It is known that the HPA axis is under GABAergic control, but the contribution of the individual subunits of the GABA receptor is largely unknown. In this study, we investigated the relationship between the α5 subunit and corticosterone levels in a new mouse model deficient for Gabra5, which is known to be linked to anxiety disorders in humans and phenologs observed in mice. We observed decreased rearing behavior, suggesting lower anxiety in the Gabra5-/- animals; however, such a phenotype was absent in the open field and elevated plus maze tests. In addition to decreased rearing behavior, we also found decreased levels of fecal corticosterone metabolites in Gabra5-/- mice indicating a lowered stress response. Moreover, based on the electrophysiological recordings where we observed a hyperpolarized state of hippocampal neurons, we hypothesize that the constitutive ablation of the Gabra5 gene leads to functional compensation with other channels or GABA receptor subunits in this model.


Asunto(s)
Corticosterona , Glucocorticoides , Humanos , Ratones , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ansiedad , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...