Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Neuropharmacol ; 22(1): 140-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36703582

RESUMEN

Parkinson's disease (PD) is a heterogeneous disease involving a complex interaction between genes and the environment that affects various cellular pathways and neural networks. Several studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy metals, and other organic pollutants are significant risk factors for the development of PD. Among the herbicides, paraquat has been commonly used, although it has been banned in many countries due to its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neurons in the substantia nigra pars compacta. The underlying mechanisms of the dopaminergic lesion are primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular crosstalks that result in the initiation of apoptosis. This review critically analyses the crucial upstream molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogenactivated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), and Wnt/ß-catenin signaling pathways.


Asunto(s)
Herbicidas , Enfermedad de Parkinson , Humanos , Paraquat/toxicidad , Herbicidas/toxicidad , Transducción de Señal , Apoptosis
2.
Mol Neurobiol ; 59(6): 3353-3369, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35306641

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the cardinal features of tremor, bradykinesia, rigidity, and postural instability, in addition to other non-motor symptoms. Pathologically, PD is attributed to the loss of dopaminergic neurons in the substantia nigra pars compacta, with the hallmark of the presence of intracellular protein aggregates of α-synuclein in the form of Lewy bodies. The pathogenesis of PD is still yet to be fully elucidated due to the multifactorial nature of the disease. However, a myriad of studies has indicated several intracellular events in triggering apoptotic neuronal cell death in PD. These include oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, alteration in dopamine catabolism, inactivation of tyrosine hydroxylase, and decreased levels of neurotrophic factors. Laboratory studies using the herbicide paraquat in different in vitro and in vivo models have demonstrated the induction of many PD pathological features. The selective neurotoxicity induced by paraquat has brought a new dawn in our perspectives about the pathophysiology of PD. Epidemiological data have suggested an increased risk of developing PD in the human population exposed to paraquat for a long term. This model has opened new frontiers in the quest for new therapeutic targets for PD. The purpose of this review is to synthesize the relationship between the exposure of paraquat and the pathogenesis of PD in in vitro and in vivo models.


Asunto(s)
Enfermedad de Parkinson , Apoptosis , Neuronas Dopaminérgicas/metabolismo , Humanos , Degeneración Nerviosa/patología , Paraquat/toxicidad , Enfermedad de Parkinson/metabolismo , Sustancia Negra/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...