Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13315, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858439

RESUMEN

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Asunto(s)
Suplementos Dietéticos , Protectores contra Radiación , Animales , Protectores contra Radiación/farmacología , Vitamina E/farmacología , Vitamina E/análogos & derivados , Síndrome de Radiación Aguda/prevención & control , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Cromanos/farmacología , Masculino , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/patología , Macaca mulatta , Hígado/efectos de los fármacos , Hígado/efectos de la radiación , Hígado/patología
2.
Sci Rep ; 14(1): 5757, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459144

RESUMEN

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Asunto(s)
Síndrome de Radiación Aguda , Cromanos , Contramedidas Médicas , Protectores contra Radiación , Vitamina E/análogos & derivados , Animales , Estados Unidos , Humanos , Vitamina E/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Protectores contra Radiación/farmacología , Macaca mulatta
3.
Drug Discov Today ; 29(2): 103856, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097137

RESUMEN

Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.


Asunto(s)
Síndrome de Radiación Aguda , Protectores contra Radiación , Estados Unidos , Humanos , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Androstenodiol/farmacocinética , Inmunidad Innata
4.
Radiat Prot Dosimetry ; 199(14): 1526-1532, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37721071

RESUMEN

Threats of radiological or nuclear disasters are of serious concern and a top priority for government agencies involved in domestic security and public health preparedness. There is a need for sensitive bioassays for biodosimetric assessments of radiation exposures originating from unanticipated nuclear/radiological events. The Food and Drug Administration Animal Rule approval pathway requires an in-depth understanding of the mechanisms of radiation injury, drug efficacy and biomarkers for radiation medical countermeasure approval. Biomarkers can be helpful for extrapolating the efficacious countermeasure dose in animals to humans. We summarised here our studies to identify candidate biomarkers for the acute radiation injury using various omic platforms (metabolomics/lipidomics, proteomics, microbiome and transcriptomics/microRNA) using murine and non-human primate models conducted in our laboratory. Multi-omic platforms appear to be highly useful in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy, which can expedite the regulatory approval of countermeasures.


Asunto(s)
Medicina Nuclear , Traumatismos por Radiación , Estados Unidos , Animales , Ratones , Multiómica , Traumatismos por Radiación/prevención & control , Biomarcadores , Modelos Animales
5.
Expert Rev Proteomics ; 20(10): 221-246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37752078

RESUMEN

INTRODUCTION: Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED: This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION: The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.


Asunto(s)
Síndrome de Radiación Aguda , Contramedidas Médicas , Animales , Humanos , Proteómica/métodos , Síndrome de Radiación Aguda/diagnóstico , Síndrome de Radiación Aguda/tratamiento farmacológico , Espectrometría de Masas/métodos , Biomarcadores
6.
Expert Opin Drug Discov ; 18(7): 797-814, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37073409

RESUMEN

BACKGROUND: Animal models are vital for the development of radiation medical countermeasures for the prophylaxis or treatment of acute radiation syndrome and for the delayed effects of acute radiation exposure. Nonhuman primates (NHPs) play an important role in the regulatory approval of such agents by the United States Food and Drug Administration following the Animal Rule. Reliance on such animal models requires that such models are well characterized. METHODS: Data gathered from both male and female animals under the same conditions and gathered concurrently are limited; therefore, the authors compared and contrasted here the radiosensitivity of both male and female NHPs provided different levels of clinical support over a range of acute, total-body gamma irradiation, as well as the influence of age and body weight. RESULTS: Under matched experimental conditions, the authors observed only marginal, but clearly evident differences between acutely irradiated male and female NHPs relative to the measured response endpoints (rates of survival, blood cell changes, and cytokine fluctuations). These differences appeared to be accentuated by the level of exposure as well as by the nature of clinical support. CONCLUSION: Additional studies with both sexes under various experimental conditions and different radiation qualities run concurrently are needed.


Asunto(s)
Síndrome de Radiación Aguda , Traumatismos Experimentales por Radiación , Animales , Estados Unidos , Masculino , Femenino , Tolerancia a Radiación , Modelos Animales de Enfermedad , Síndrome de Radiación Aguda/tratamiento farmacológico , Macaca mulatta
8.
Expert Opin Investig Drugs ; 32(1): 25-35, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36655861

RESUMEN

INTRODUCTION: The possibility of exposure to high doses of total- or partial-body ionizing radiation at a high dose rate due to radiological/nuclear accidents or terrorist attacks is increasing. Despite research and development during the last six decades, there is a shortage of nontoxic, safe, and effective radiation medical countermeasures (MCMs) for radiological and nuclear emergencies. To date, the US Food and Drug Administration (US FDA) has approved only four agents for the mitigation of hematopoietic acute radiation syndrome (H-ARS). AREA COVERED: We present the current status of a promising radiation countermeasure, gamma-tocotrienol (GT3; a component of vitamin E) as a radiation MCM that has been investigated in murine and nonhuman primate models of H-ARS. There is significant work with this agent using various omic platforms during the last few years to identify its efficacy biomarkers. EXPERT OPINION: GT3 is a newer type of radioprotector having significant injury-countering potential and is currently under advanced development for H-ARS. As a pre-exposure drug, it requires only single doses, lacks significant toxicity, and has minimal, ambient temperature storage requirements; thus, GT3 appears to be an ideal MCM for military and first responders as well as for storage in the Strategic National Stockpile.


Asunto(s)
Síndrome de Radiación Aguda , Contramedidas Médicas , Protectores contra Radiación , Humanos , Ratones , Animales , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control , Protectores contra Radiación/efectos adversos , Vitamina E/efectos adversos
9.
Life Sci Space Res (Amst) ; 35: 20-29, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36336365

RESUMEN

There is a need to develop and deploy medical countermeasures (MCMs) in order to support astronauts during space missions against excessive exposures to ionizing radiation exposure. The radiation environment of extraterrestrial space is complex and is characterized by nearly constant fluences of elemental atomic particles (protons being a dominant particle type) with widely different energies and ionization potentials. Chronic exposure to such ionizing radiation carries both near- and long-term health risks, which are generally related to the relative intensity and duration of exposure. These radiation-associated health risks can be managed only to a limited extent by physical means, but perhaps they might be more effectively managed biomedically. The Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences has a long history of researching and developing MCMs specifically designed to support terrestrial-based military missions involving a radiation-threat component. The development of MCMs for both low and high doses of radiation are major aims of current research, and as such can provide lessons learned for the development of countermeasures applicable to future space missions and its extraterrestrial radiation environment.


Asunto(s)
Radiación Cósmica , Personal Militar , Vuelo Espacial , Humanos , Radiación Cósmica/efectos adversos , Radiobiología , Astronautas , Academias e Institutos , Dosis de Radiación
10.
Expert Opin Drug Discov ; 17(8): 865-878, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35838021

RESUMEN

INTRODUCTION: The high attrition rate during drug development remains a challenge that costs a significant amount of time and money. Improving the probabilities of success during the early stages of radiation medical countermeasure (MCM) development for approval by the United States Food and Drug Administration (US FDA) following the Animal Rule will reduce this burden. AREA COVERED: This article focuses on new technologies involving various organ-on-chip platforms. Of late, there has been rapid development of these technologies, especially in terms of mimicking both normal and abnormal physiological conditions. Here, we suggest possible applications of these novel systems for the discovery and development of radiation MCMs for the acute radiation syndrome (ARS). EXPERT OPINION: Each organ-on-a-chip system has its own strengths and shortcomings. As such, the system selected for MCM discovery, development, and regulatory approval should be carefully considered and optimized to the fullest extent in order to augment successful drug testing and the minimization of attrition rates of candidate agents. The recent encouraging progress with organ-on-a-chip technology will likely lead to additional radiation MCMs for ARS. The acceptance of organ-on-a-chip technology may be a promising step toward improving the success rate of pharmaceuticals in MCM development.


Asunto(s)
Síndrome de Radiación Aguda , Protectores contra Radiación , Síndrome de Radiación Aguda/tratamiento farmacológico , Animales , Desarrollo de Medicamentos , Descubrimiento de Drogas , Estados Unidos , United States Food and Drug Administration
11.
Drugs Today (Barc) ; 58(3): 133-145, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35274632

RESUMEN

Detonation of an improvised nuclear weapon, or a radiological dispersal device by terrorists, or an unintended radiological/nuclear accident in populated areas would result in a mass casualty scenario with radiation exposures of different severities. Such incidences are perceived as national security threats of major consequences. Acute radiation syndrome (ARS) is triggered by an exposure to a high dose of penetrating ionizing radiation during a short time window. In humans, moderate exposure to 2 to 4 Gy of ionizing radiation results in clinically manageable hematopoietic ARS (H-ARS), characterized by severe depletion of vital blood cells and bone marrow progenitors. Since 2015, the United States Food and Drug Administration (U.S. FDA) has approved four radiation medical countermeasures for H-ARS following the Animal Rule; namely, Neupogen, Neulasta, Leukine and Nplate (romiplostim). Here, we briefly present the treatment modalities for H-ARS. We have discussed the latest FDA-approved agent, romiplostim, as a treatment modality for H-ARS. The nature of this agent and the preclinical and clinical work that preceded its FDA approval as a radiation medical countermeasure are discussed, as are the development and use of related thrombopoietic agents for the treatment of radiation-exposed victims.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/tratamiento farmacológico , Animales , Receptores Fc/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Trombopoyetina/efectos adversos , Estados Unidos
14.
Int J Radiat Biol ; 97(11): 1526-1547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34402734

RESUMEN

PURPOSE: The intent of this article is to report the status of some of the pharmaceuticals currently in late stage development for possible use for individuals unwantedly and acutely injured as a result of radiological/nuclear exposures. The two major questions we attempt to address here are: (a) What medicinals are currently deemed by regulatory authorities (US FDA) to be safe and effective and are being stockpiled? (b) What additional agents might be needed to make the federal/state/local medicinal repositories more robust and useful in effectively managing contingencies involving radiation overexposures? CONCLUSIONS: A limited number (precisely four) of medicinals have been deemed safe and effective, and are approved by the US FDA for the 'hematopoietic acute radiation syndrome (H-ARS).' These agents are largely recombinant growth factors (e.g. rhuG-CSF/filgrastim, rhuGM-CSF/sargramostim) that target and stimulate myeloid progenitors within bone marrow. Romiplostim, a small molecular agonist that enhances platelet production via stimulation of bone marrow megakaryocytes, has been recently approved and indicated for H-ARS. It is critical that additional agents for other major sub-syndromes of ARS (gastrointestinal-ARS) be approved. Future success in developing such medicinals will undoubtedly entail some form of a polypharmaceutical strategy, or perhaps novel, bioengineered chimeric agents with multiple, radioprotective/radiomitigative functionalities.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/tratamiento farmacológico , Citocinas , Filgrastim , Humanos , Protección Radiológica , Estados Unidos , United States Food and Drug Administration
15.
Sci Rep ; 11(1): 11449, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075191

RESUMEN

To date, the United States Food and Drug Administration (FDA) has approved four drugs to mitigate hematopoietic acute radiation syndrome and all four are repurposed radiomitigators. There are several additional drug candidates currently under evaluation that may also be helpful for use during a widespread emergency. One possible candidate is Ex-Rad, also known as ON01210, a chlorobenzyl sulfone derivative (organosulfur compound), which is a novel, small-molecule kinase inhibitor with demonstrated efficacy in the murine model. In this study, we have evaluated the metabolomic and lipidomic profiles in serum samples of nonhuman primates (NHPs) treated with Ex-Rad after exposure to ionizing radiation. Two different dose administration schedules (Ex-Rad I administered 24 and 36 h post-irradiation, and Ex-Rad II administered 48 and 60 h post-irradiation), were used and evaluated using a global molecular profiling approach. We observed alterations in biochemical pathways relating to inflammation and oxidative stress after radiation exposure that were alleviated in animals that received Ex-Rad I or Ex-Rad II. The results from this study lend credence to the possible radiomitigative effects of this drug possibly via a dampening of metabolism-based tissue injury, thus aiding in recovery of vital, radiation-injured organ systems.


Asunto(s)
Rayos gamma/efectos adversos , Metaboloma , Traumatismos Experimentales por Radiación , Sulfonamidas/farmacología , Animales , Macaca mulatta , Masculino , Metaboloma/efectos de los fármacos , Metaboloma/efectos de la radiación , Traumatismos Experimentales por Radiación/sangre , Traumatismos Experimentales por Radiación/tratamiento farmacológico
16.
Expert Rev Mol Diagn ; 21(7): 641-654, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34024238

RESUMEN

INTRODUCTION: There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses. AREAS COVERED: This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation. Recent advancements in the analytics of high-resolution chromatography, mass spectrometry, and bioinformatics have led to untargeted (global) and targeted (quantitative phase) approaches to identify biomarkers of radiation injury and countermeasure efficacy. Biomarkers are deemed essential for both assessing the radiation exposure levels and for extrapolative processes involved in determining scaling factors of a given radiation countering medicinal between experimental animals and humans. EXPERT OPINION: The discipline of metabolomics appears to be highly informative in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy.


Asunto(s)
Traumatismos por Radiación , Liberación de Radiactividad Peligrosa , Animales , Biomarcadores , Humanos , Metabolómica/métodos , Traumatismos por Radiación/etiología , Radiación Ionizante
17.
Front Pharmacol ; 12: 624844, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040517

RESUMEN

The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.

19.
Drug Discov Today ; 26(1): 17-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065293

RESUMEN

High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues. The drug has been evaluated clinically for its pharmacokinetics (PK), toxicity, and biomarkers. The US Food and Drug Administration (FDA) has granted investigational new drug, fast-track, and orphan drug statuses to entolimod. Its safety, efficacy, and animal-to-human dose conversion data allowed its progression with a pre-emergency use authorization application submission.


Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Péptidos/farmacología , Animales , Desarrollo de Medicamentos , Humanos , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/análisis , Protectores contra Radiación/farmacología
20.
Metabolites ; 10(5)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455594

RESUMEN

Acute exposure to high-dose ionizing irradiation has the potential to severely injure the hematopoietic system and its capacity to produce vital blood cells that innately serve to ward off infections and excessive bleeding. Developing a medical radiation countermeasure that can protect individuals from the damaging effects of irradiation remains a significant, unmet need and an area of great public health interest and concern. Despite significant advancements in the field of radiation countermeasure development to find a nontoxic and effective prophylactic agent for acute radiation syndrome, no such drug has yet been approved by the Food and Drug Administration. This study focuses on examining the metabolic corrections elicited by amifostine, a potent radioprotector, on tissues of vital body organs, such as the heart, spleen, and kidney. Our findings indicate that prophylaxis with this drug offers significant protection against potentially lethal radiation injury, in part, by correction of radiation-induced metabolic pathway perturbations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA