Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8382, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333507

RESUMEN

We describe a process for rapid antibody affinity optimization by repertoire mining to identify clones across B cell clonal lineages based on convergent immune responses where antigen-specific clones with the same heavy (VH) and light chain germline segment pairs, or parallel lineages, bind a single epitope on the antigen. We use this convergence framework to mine unique and distinct VH lineages from rat anti-triggering receptor on myeloid cells 2 (TREM2) antibody repertoire datasets with high diversity in the third complementarity-determining loop region (CDR H3) to further affinity-optimize a high-affinity agonistic anti-TREM2 antibody while retaining critical functional properties. Structural analyses confirm a nearly identical binding mode of anti-TREM2 variants with subtle but significant structural differences in the binding interface. Parallel lineage repertoire mining is uniquely tailored to rationally explore the large CDR H3 sequence space in antibody repertoires and can be easily and generally applied to antibodies discovered in vivo.


Asunto(s)
Afinidad de Anticuerpos , Regiones Determinantes de Complementariedad , Receptores Inmunológicos , Animales , Regiones Determinantes de Complementariedad/inmunología , Afinidad de Anticuerpos/inmunología , Humanos , Ratas , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/inmunología , Linfocitos B/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Epítopos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos/inmunología
2.
Cell ; 187(16): 4305-4317.e18, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38936360

RESUMEN

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.


Asunto(s)
Colitis , Interleucina-17 , Células Th17 , Animales , Administración Oral , Ratones , Humanos , Ratas , Colitis/tratamiento farmacológico , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inhibidores , Células Th17/inmunología , Receptores de Interleucina/metabolismo , Receptores de Interleucina/antagonistas & inhibidores , Ratones Endogámicos C57BL , Masculino , Interleucina-23/metabolismo , Interleucina-23/antagonistas & inhibidores , Distribución Tisular , Femenino , Ratas Sprague-Dawley
3.
Science ; 372(6537)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33795432

RESUMEN

Multivalent display of receptor-engaging antibodies or ligands can enhance their activity. Instead of achieving multivalency by attachment to preexisting scaffolds, here we unite form and function by the computational design of nanocages in which one structural component is an antibody or Fc-ligand fusion and the second is a designed antibody-binding homo-oligomer that drives nanocage assembly. Structures of eight nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage, respectively, closely match the corresponding computational models. Antibody nanocages targeting cell surface receptors enhance signaling compared with free antibodies or Fc-fusions in death receptor 5 (DR5)-mediated apoptosis, angiopoietin-1 receptor (Tie2)-mediated angiogenesis, CD40 activation, and T cell proliferation. Nanocage assembly also increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-angiotensin-converting enzyme 2 (ACE2) fusion proteins.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Nanoestructuras , Ingeniería de Proteínas , Transducción de Señal , Angiopoyetinas/química , Angiopoyetinas/inmunología , Angiopoyetinas/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Antígenos CD40/química , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Línea Celular Tumoral , Proliferación Celular , Simulación por Computador , Genes Sintéticos , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Activación de Linfocitos , Modelos Moleculares , Unión Proteica , Receptor TIE-2/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Linfocitos T/fisiología
4.
J Biol Chem ; 290(35): 21615-28, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26134567

RESUMEN

Heat shock protein 90 (hsp90) drives heme insertion into the ß1 subunit of soluble guanylate cyclase (sGC) ß1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90ß and apo-sGCß1. hsp90ß and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCß1 (sGCß1(1-359)-H105F). Surprisingly, hsp90ß and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-ß1(1-359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90ß M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCß1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90ß interaction could prevent apo-sGCß1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.


Asunto(s)
Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Medición de Intercambio de Deuterio , Proteínas HSP90 de Choque Térmico/química , Hemo/metabolismo , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Guanilil Ciclasa Soluble
5.
Front Physiol ; 5: 134, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24772092

RESUMEN

Nitric oxide (NO) maintains cardiovascular health by activating soluble guanylate cyclase (sGC) to increase cellular cGMP levels. Cardiovascular disease is characterized by decreased NO-sGC-cGMP signaling. Pharmacological activators and stimulators of sGC are being actively pursued as therapies for acute heart failure and pulmonary hypertension. Here we review molecular mechanisms that modulate sGC activity while emphasizing a novel biochemical pathway in which binding of the matricellular protein thrombospondin-1 (TSP1) to the cell surface receptor CD47 causes inhibition of sGC. We discuss the therapeutic implications of this pathway for blood flow, tissue perfusion, and cell survival under physiologic and disease conditions.

6.
Biochemistry ; 53(13): 2153-65, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24669844

RESUMEN

Soluble guanylate cyclase (sGC) plays a central role in the cardiovascular system and is a drug target for the treatment of pulmonary hypertension. While the three-dimensional structure of sGC is unknown, studies suggest that binding of the regulatory domain to the catalytic domain maintains sGC in an autoinhibited basal state. The activation signal, binding of NO to heme, is thought to be transmitted via the regulatory and dimerization domains to the cyclase domain and unleashes the full catalytic potential of sGC. Consequently, isolated catalytic domains should show catalytic turnover comparable to that of activated sGC. Using X-ray crystallography, activity measurements, and native mass spectrometry, we show unambiguously that human isolated catalytic domains are much less active than basal sGC, while still forming heterodimers. We identified key structural elements regulating the dimer interface and propose a novel role for residues located in an interfacial flap and a hydrogen bond network as key modulators of the orientation of the catalytic subunits. We demonstrate that even in the absence of the regulatory domain, additional sGC domains are required to guide the appropriate conformation of the catalytic subunits associated with high activity. Our data support a novel regulatory mechanism whereby sGC activity is tuned by distinct domain interactions that either promote or inhibit catalytic activity. These results further our understanding of heterodimerization and activation of sGC and open additional drug discovery routes for targeting the NO-sGC-cGMP pathway via the design of small molecules that promote a productive conformation of the catalytic subunits or disrupt inhibitory domain interactions.


Asunto(s)
Biocatálisis , Dominio Catalítico , Guanilato Ciclasa/química , Guanilato Ciclasa/metabolismo , Multimerización de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Cristalografía por Rayos X , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/genética , Humanos , Enlace de Hidrógeno , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Guanilil Ciclasa Soluble
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...