Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 223: 118934, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36058095

RESUMEN

The anomalous past two years of the COVID-19 pandemic have been a test of human response to global crisis management as typical human activities were significantly altered. The COVID-instigated anthropause has illustrated the influence that humans and the biosphere have on each other, especially given the variety of national mobility interventions that have been implemented globally. These local COVID-19-era restrictions influenced human-ecosystem interactions through changes in accessibility of water systems and changes in ecosystem service demand. Four urban aquatic case studies in the Netherlands demonstrated shifts in human demand during the anthropause. For instance, reduced boat traffic in Amsterdam canals led to improved water clarity. In comparison, ongoing service exploitation from increased recreational fishing, use of bathing waters and national parks visitation are heightening concerns about potential ecosystem degradation. We distilled management lessons from both the case studies as well as from recent literature pertaining to ecological intactness and social relevance. Equally important to the lessons themselves, however, is the pace at which informed management practices are established after the pandemic ends, particularly as many communities currently recognize the importance of aquatic ecosystems and are amenable to their protection.


Asunto(s)
COVID-19 , Ecosistema , Humanos , Países Bajos , Pandemias , Agua
2.
PLoS One ; 17(2): e0263899, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213583

RESUMEN

Progressively more community initiatives have been undertaken over last decades to monitor water quality. Biological data collected by volunteers has been used for biodiversity and water quality studies. Despite the many citizen science projects collecting and using macroinvertebrates, the number of scientific peer-reviewed publications that use this data, remains limited. In 2018, a citizen science project on biological water quality assessment was launched in the Netherlands. In this project, volunteers collect macroinvertebrates from a nearby waterbody, identify and count the number of specimens, and register the catch through a web portal to instantaneously receive a water quality score based on their data. Water quality monitoring in the Netherlands is traditionally the field of professionals working at water authorities. Here, we compare the data from the citizen science project with the data gathered by professionals. We evaluate information regarding type and distribution of sampled waterbodies and sampling period, and compare general patterns in both datasets with respect to collected animals and calculated water quality scores. The results show that volunteers and professionals seldomly sample the same waterbody, that there is some overlap in sampling period, and that volunteers more frequently sampled urban waters and smaller waterbodies. The citizen science project is thus yielding data about understudied waters and this spatial and temporal complementarity is useful. The character and thoroughness of the assessments by volunteers and professionals are likely to differentiate. Volunteers collected significantly lower numbers of animals per sample and fewer animals from soft sediments like worms and more mobile individuals from the open water column such as boatsmen and beetles. Due to the lack of simultaneous observations at various locations by volunteers and professionals, a direct comparison of water quality scores is impossible. However, the obtained patterns from both datasets show that the water quality scores between volunteers and professionals are dissimilar for the different water types. To bridge these differences, new tools and processes need to be further developed to increase the value of monitoring biological water quality by volunteers for professionals.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Voluntarios , Calidad del Agua , Ciencia Ciudadana , Humanos , Países Bajos
4.
Sci Total Environ ; 769: 144294, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486172

RESUMEN

Intense sand and gravel mining has created numerous man-made lakes around the world in the past century. These small quarry lakes (1-50 ha) are usually hydrologically isolated, often deep (6-40 m) and stratify during summer and in cold winters. Due to their small size, these deep man-made lakes are usually not included in the regular monitoring campaigns, e.g. as required for the European Water Framework Directive (WFD). Therefore, not much is known about the ecological functioning of these novel ecosystems. During two summers, we determined the macrophyte diversity and measured a range of physico-chemical and biological parameters in 51 quarry lakes in the catchment area of the rivers Meuse and Rhine. We compared the results of this campaign to the chemical and macrophyte sampling as performed for the WFD in the immediate surrounding shallow standing waters. Alpha (local) and beta diversity (regional), and local contribution to beta diversity were calculated for the whole region of which beta diversity was further partitioned into a true species replacement and richness difference component. Quarry lakes contain higher water quality reflected by lower nutrient and chlorophyll-a concentration compared with shallow water bodies. Additionally, quarry lakes contribute significantly to the regional macrophyte diversity pool by harboring distinctly different macrophyte communities (beta diversity - replacement). Specifically quarry lakes with a total phosphorus concentration in the water column below 35 µg P/l contribute most to beta diversity among quarry lakes. Novel ecosystems such as deep quarry lakes are often perceived as less valuable ecosystems, with strong implications regarding their management. Our results show that quarry lakes are in general of better chemical and biological quality compared with shallow standing waters. We therefore call for a more integrated assessment of the quality of quarry lakes and corresponding management strategy of these waters by water managers.

5.
J Environ Manage ; 242: 246-257, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31048230

RESUMEN

Fresh water is a limited resource under anthropogenic threat. Europeans are using an average of 3550 L per capita per day and this amount is increasing steadily as incomes rise. Water saving options are being actively promoted, but these intensified measures do not yet come close to saving enough water to prevent water shortages that may seriously affect our way of life in the near future. With projected increases in demands for good quality fresh water, educating the public about sustainable personal water use and water quality threats becomes an absolute necessity. One way to achieve this is through engaging citizens in water issues, e.g. through citizen science projects. Using snowball convenience sampling, we distributed a questionnaire among 498 people in 23 countries to investigate whether people were aware of how much water they used, what they perceived as threats to water quality and whether they would like to help improve water quality. Our results showed that the amount of daily water use was greatly underestimated among respondents, especially indirect use of water for the production of goods and services. Furthermore, the effects of climate change and detrimental habits such as feeding ducks were underestimated, presumably because of environmental illiteracy. However, eighty-five percent (85%) of our participants indicated an interest in directly working together with scientists to understand and improve their local water quality. Involving citizens in improving local lake quality promotes both environmental and scientific literacy, and can therefore result in a reduction in daily personal water use. The next iteration of the Water Framework Directive legislation will be launched shortly, requiring water managers to include citizens in their monitoring schemes. Engaging citizens will not only help improve surface water quality, and educate about cause and effect chains in water quality, but will also reduce the personal fresh water usage.


Asunto(s)
Calidad del Agua , Agua , Concienciación , Cambio Climático , Agua Dulce
6.
Water Res ; 151: 31-43, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30594088

RESUMEN

Litter decomposition is a vital part of the global carbon cycle as it determines not only the amount of carbon to be sequestered, but also how fast carbon re-enters the cycle. Freshwater systems play an active role in the carbon cycle as it receives, and decomposes, terrestrial litter material alongside decomposing aquatic plant litter. Decomposition of organic matter in the aquatic environment is directly controlled by water temperature and nutrient availability, which are continuously affected by global change. We adapted the Tea Bag Index (TBI), a highly standardized methodology for determining soil decomposition, for lakes by incorporating a leaching factor. By placing Lipton pyramid tea bags in the aquatic environment for 3 h, we quantified the period of intense leaching which usually takes place prior to litter (tea) decomposition. Standard TBI methodology was followed after this step to determine how fast decomposition takes place (decomposition rate, k1) and how much of the material cannot be broken down and is thus sequestered (stabilization factor, S). A Citizen Science project was organized to test the aquatic TBI in 40 European lakes located in four climate zones, ranging from oligotrophic to hypereutrophic systems. We expected that warmer and/or eutrophic lakes would have a higher decomposition rate and a more efficient microbial community resulting in less tea material to be sequestered. The overall high decomposition rates (k1) found confirm the active role lakes play in the global carbon cycle. Across climate regions the lakes in the warmer temperate zone displayed a higher decomposition rate (k1) compared to the colder lakes in the continental and polar zones. Across trophic states, decomposition rates were higher in eutrophic lakes compared to oligotrophic lakes. Additionally, the eutrophic lakes showed a higher stabilization (S), thus a less efficient microbial community, compared to the oligotrophic lakes, although the variation within this group was high. Our results clearly show that the TBI can be used to adequately assess the decomposition process in aquatic systems. Using "alien standard litter" such as tea provides a powerful way to compare decomposition across climates, trophic states and ecosystems. By providing standardized protocols, a website, as well as face to face meetings, we also showed that collecting scientifically relevant data can go hand in hand with increasing scientific and environmental literacy in participants. Gathering process-based information about lake ecosystems gives managers the best tools to anticipate and react to future global change. Furthermore, combining this process-based information with citizen science, thus outreach, is in complete agreement with the Water Framework Directive goals as set in 2010.


Asunto(s)
Ecosistema , Lagos , Carbono , Clima ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...