Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 114(2): 393-404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37581435

RESUMEN

Peanuts grown in tropical, subtropical, and temperate regions are susceptible to stem rot, which is a soilborne disease caused by Athelia rolfsii. Due to the lack of reliable environmental-based scheduling recommendations, stem rot control relies heavily on fungicides that are applied at predetermined intervals. We conducted inoculated field experiments for six site-years in North Florida to examine the relationship between germination of A. rolfsii sclerotia: the inoculum, stem rot symptom development in the peanut crop, and environmental factors such as soil temperature (ST), soil moisture, relative humidity (RH), precipitation, evapotranspiration, and solar radiation. Window-pane analysis with hourly and daily environmental data for 5- to 28-day periods before each disease assessment were evaluated to select model predictors using correlation analysis, regularized regression, and exhaustive feature selection. Our results indicated that within-canopy ST (at 0.05 m belowground) and RH (at 0.15 m aboveground) were the most important environmental variables that influenced the progress of mycelial activity in susceptible peanut crops. Decision tree analysis resulted in an easy-to-interpret one-variable model (adjusted R2 = 0.51, Akaike information criterion [AIC] = 324, root average square error [RASE] = 14.21) or two-variable model (adjusted R2 = 0.61, AIC = 306, RASE = 10.95) that provided an action threshold for various disease scenarios based on number of hours of canopy RH above 90% and ST between 25 and 35°C in a 14-day window. Coupling an existing preseason risk index for stem rot, such as Peanut Rx, with the environmentally based predictors identified in this study would be a logical next step to optimize stem rot management. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arachis , Enfermedades de las Plantas , Enfermedades de las Plantas/prevención & control , Productos Agrícolas , Suelo , Manejo de la Enfermedad
2.
Phytopathology ; 114(1): 126-136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37531626

RESUMEN

Athelia rolfsii, causal agent of "southern blight" disease, is a soilborne fungal pathogen with a wide host range of more than 500 species. This study's objectives were to (i) quantify the effects of two environmental factors, temperature and soil moisture, on germination of A. rolfsii inoculum (sclerotia), which is a critical event for the onset of disease epidemics and (ii) predict the timing of sclerotial germination by applying population-based threshold-type hydrothermal time (HTT) models. We conducted in vitro germination experiments with three isolates of A. rolfsii isolated from peanuts, which were tested at five temperatures (T), ranging from 17 to 40°C, four matric potentials (Ψm) between -0.12 and -1.57 MPa, and two soil types (fine sand and loamy fine sand), using a factorial design. When Ψm was maintained between -0.12 and -0.53 MPa, T from 22 to 34°C was found to be conducive to sclerotial germination (>50%). The HTT models were fitted for a range of T (22 to 34°C) and Ψm (-0.12 to -1.57 MPa) that accounted for 84% or more of variation in the timing of sclerotial germination. The estimated base T ranged between 0 and 4.5°C and the estimated base Ψm between -2.96 and -1.52 MPa. The results suggest that the HTT modeling approach is a suitable means of predicting the timing of A. rolfsii sclerotial germination. This HTT methodology can potentially be tested to fine-tune fungicide application timing and in-season A. rolfsii management strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ascomicetos , Basidiomycota , Germinación , Arena , Enfermedades de las Plantas/microbiología , Suelo
3.
Front Plant Sci ; 13: 900011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774821

RESUMEN

Temperature is a major abiotic stress factor limiting plant growth and development during the early developmental stage. Information on carinata (Brassica carinata A. Braun) traits response to low and high temperatures is necessary for breeding or selecting genotypes suited for specific ecoregions, which is limited. In the present study, 12 carinata genotypes were evaluated under low (17/09°C), optimum (22/14°C), and high (27/19°C) day/night temperatures at the early developmental stage. This study quantified temperature effects on several physiological and morphological characteristics of 12-advanced carinata lines. High-temperature plants decreased (15%) the accumulation of flavonoids and increased the nitrogen balance index by 25%. Low-temperature treatment significantly inhibited the aboveground (plant height, leaf area, number, and shoot weight) and root (length, surface area, and weight) traits. Across all genotypes, the shoot weight decreased by 55% and the root weight by 49% under low temperature. On the other hand, the maximum proportion of biomass was partitioned to roots under low temperature than at the high temperature. A poor relationship (r 2 = 0.09) was found between low- and high-temperature indices, indicating differences in trait responses and tolerance mechanisms. AX17004 and AX17009 with higher root to shoot ratios might be suitable for late planting windows or regions with low-temperature spells. The two genotypes (AX17015 and AX17005) accumulated higher biomass under low- and high-temperature treatments can be used for planting in later summer or early winter. The identified low- and high-temperature stress-tolerant carinata genotypes could be a valuable resource for increasing stress tolerance during the early developmental stage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA