Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744947

RESUMEN

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

2.
Stem Cell Reports ; 19(1): 100-111, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38101400

RESUMEN

Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.


Asunto(s)
Interleucina-3 , Leucemia Mieloide Aguda , Ratones , Humanos , Animales , Interleucina-3/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo
3.
Nat Biomed Eng ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062131

RESUMEN

Pluripotent stem cells (PSCs) are a promising source of allogeneic T cells for off-the-shelf immunotherapies. However, the process of differentiating genetically engineered PSCs to generate mature T cells requires that the same molecular elements that are crucial for the selection of these cells be removed to prevent alloreactivity. Here we show that antigen-restricted mature T cells can be generated in vitro from PSCs edited via CRISPR to lack endogenous T cell receptors (TCRs) and class I major histocompatibility complexes. Specifically, we used T cell precursors from RAG1-/-RAG2-/-B2M-/- human PSCs expressing a single TCR, and a murine stromal cell line providing the cognate human major histocompatibility complex molecule and other critical signals for T cell maturation. Possibly owing to the absence of TCR mispairing, the generated T cells showed substantially better tumour control in mice than T cells with an intact endogenous TCR. Introducing the T cell selection components into the stromal microenvironment of the PSCs overcomes inherent biological challenges associated with the development of T cell immunotherapies from allogeneic PSCs.

4.
J Cardiovasc Dev Dis ; 10(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38132666

RESUMEN

Endovascular therapy (EVT) has revolutionized the management of acute ischaemic strokes with large vessel occlusion, with emerging evidence suggesting its benefit also in large infarct core volume strokes. In the last two years, four randomised controlled trials have been published on this topic-RESCUE-Japan LIMIT, ANGEL-ASPECT, SELECT2 and TENSION, with overall results showing that EVT improves functional and neurological outcomes compared to medical management alone. This review aims to summarise the recent evidence presented by these four trials and highlight some of the limitations in our current understanding of this topic.

5.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37730274

RESUMEN

BACKGROUND: Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS: Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS: ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS: CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral , Quimiocina CCL21
6.
Microorganisms ; 11(8)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630656

RESUMEN

Remdesivir is the first FDA-approved drug for treating severe SARS-CoV-2 infection and targets RNA-dependent RNA polymerase (RdRp) that is required for viral replication. To monitor for the development of mutations that may result in remdesivir resistance during prolonged treatment, we sequenced SARS-CoV-2 specimens collected at different treatment time points in two transplant patients with severe COVID-19. In the first patient, an allogeneic hematopoietic stem cell transplant recipient, a transient RdRp catalytic subunit mutation (nsp12:A449V) was observed that has not previously been associated with remdesivir resistance. As no in vitro study had been conducted to elucidate the phenotypic effect of nsp12:A449V, its clinical significance is unclear. In the second patient, two other transient RdRp mutations were detected: one in the catalytic subunit (nsp12:V166A) and the other in an accessory subunit important for processivity (nsp7:D67N). This is the first case report for a potential link between the nsp12:V166A mutation and remdesivir resistance in vivo, which had only been previously described by in vitro studies. The nsp7:D67N mutation has not previously been associated with remdesivir resistance, and whether it has a phenotypic effect is unknown. Our study revealed SARS-CoV-2 genetic dynamics during remdesivir treatment in transplant recipients that involved mutations in the RdRp complex (nsp7 and nsp12), which may be the result of selective pressure. These results suggest that close monitoring for potential resistance during the course of remdesivir treatment in highly vulnerable patient populations may be beneficial. Development and utilization of diagnostic RdRp genotyping tests may be a future direction for improving the management of chronic COVID-19.

7.
Proc Natl Acad Sci U S A ; 120(21): e2221116120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192158

RESUMEN

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.


Asunto(s)
Neoplasias , Precursores del ARN , Masculino , Humanos , Precursores del ARN/metabolismo , Empalme Alternativo , Leucocitos Mononucleares/metabolismo , Receptores de Antígenos de Linfocitos T , Epítopos de Linfocito T , Inmunoterapia , Antígenos de Neoplasias , Péptidos/metabolismo , Neoplasias/genética , Neoplasias/terapia
8.
Cell Rep ; 42(3): 112241, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36906850

RESUMEN

Generation of chimeric antigen receptor (CAR) T cells from pluripotent stem cells (PSCs) will enable advances in cancer immunotherapy. Understanding how CARs affect T cell differentiation from PSCs is important for this effort. The recently described artificial thymic organoid (ATO) system supports in vitro differentiation of PSCs to T cells. Unexpectedly, PSCs transduced with a CD19-targeted CAR resulted in diversion of T cell differentiation to the innate lymphoid cell 2 (ILC2) lineage in ATOs. T cells and ILC2s are closely related lymphoid lineages with shared developmental and transcriptional programs. Mechanistically, we show that antigen-independent CAR signaling during lymphoid development enriched for ILC2-primed precursors at the expense of T cell precursors. We applied this understanding to modulate CAR signaling strength through expression level, structure, and presentation of cognate antigen to demonstrate that the T cell-versus-ILC lineage decision can be rationally controlled in either direction, providing a framework for achieving CAR-T cell development from PSCs.


Asunto(s)
Células Madre Pluripotentes , Linfocitos T , Inmunidad Innata , Linfocitos/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Inmunoterapia Adoptiva/métodos , Antígenos CD19 , Receptores de Antígenos de Linfocitos T/metabolismo
9.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36944331

RESUMEN

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Asunto(s)
Inmunodeficiencia Combinada Grave , Linfocitos T , Humanos , Animales , Ratones , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Edición Génica , Ratones SCID , Complejo CD3 , Receptores de Antígenos de Linfocitos T/genética
10.
J Vasc Access ; 24(4): 660-665, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34538194

RESUMEN

BACKGROUND: Maintaining patent access is essential for haemodialysis dependent end stage renal failure patients. The COVID-19 pandemic has significantly affected surgical and interventional radiology services worldwide. We aimed to review the impact COVID-19 has caused to the management of acute dialysis access thrombosis. METHODS: We conducted a single centre retrospective review of outcomes of patients with arteriovenous fistula and arteriovenous graft thrombosis between March and May 2020, which coincided with the first peak of the COVID-19 pandemic in London, and a similar period in the previous year, March-May 2019. Outcomes in both cohorts of patients were compared, including attempts at salvage, salvage success, 1-month patency rates after salvage and subsequent surgery on the same access. We also analysed the use of tunnelled haemodialysis lines (THL), either due to failed salvage attempts or when salvage was not attempted. RESULTS: There was a similar incidence of access thrombosis in both periods (26 cases in 2019, 38 in 2020). There were 601 patients dialysing via an arteriovenous fistula or graft in 2019, and 568 patients in 2020. Access salvage, when attempted, had similar success rates and 1-month patency (salvage success 74% vs 80%, p = 0.39; 1-month patency 55% vs 62%, p = 0.69). The proportion of patients where access salvage was not attempted and a THL inserted was significantly higher in 2020 compared to 2019 (32% vs 4%, p = 0.007). There were more patients who subsequently had surgery to salvage or revise the same access in 2019 compared to 2020 (62% vs 13%, p < 0.001). CONCLUSIONS: During the peak of the COVID-19 pandemic, there were fewer attempts at access salvage. This was a conscious decision due to increased pressure on the healthcare system, access to emergency interventional radiology or operative theatres and the perceived risk/benefit ratio of access salvage. The long-term effects of this change in practice remain unknown.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , COVID-19 , Trombosis , Humanos , Fístula Arteriovenosa/etiología , Derivación Arteriovenosa Quirúrgica/efectos adversos , COVID-19/epidemiología , Oclusión de Injerto Vascular/diagnóstico por imagen , Oclusión de Injerto Vascular/etiología , Oclusión de Injerto Vascular/terapia , Pandemias , Diálisis Renal , Estudios Retrospectivos , Trombosis/diagnóstico por imagen , Trombosis/etiología , Trombosis/terapia , Resultado del Tratamiento , Grado de Desobstrucción Vascular
11.
Artículo en Inglés | MEDLINE | ID: mdl-36521445

RESUMEN

INTRODUCTION: Detection of atrial fibrillation (AF) is challenging in patients after ischemic stroke due to its paroxysmal nature. We aim to determine the utility of a combined clinical, electrocardiographic and genetic variables model to predict AF in a post-stroke population. MATERIALS AND METHODS: We performed a cohort study at a single comprehensive stroke centre from 09/11/2009 to 31/10/2017. All patients recruited were diagnosed with acute ischemic stroke or transient ischemic attacks. Electrocardiographic variables including p-wave terminal force (PWTF), corrected QT interval (QTc) and genetic variables including single nucleotide polymorphisms (SNP) at the 4q25 (rs2200733) were evaluated. Clinical, electrocardiographic and genetic variables of patients without AF and those who developed AF were compared. Multiple logistic regression analysis and receiver operating characteristics were performed to identify parameters and determine their ability to predict the occurrence of AF. RESULTS: Out of 709 patients (median age of 59 years, IQR 52-67) recruited, sixty (8.5%) were found to develop AF on follow-up. Age (odds ratio (OR): 3.49, 95% confidence interval (CI): 2.03-5.98, p<0.0001), hypertension (OR: 2.76, 95% CI: 1.36-5.63, p=0.0052) and valvular heart disease (OR: 8.49, 95% CI: 2.62-27.6, p<0.004 were the strongest predictors of AF, with area under receiver operating value of 0.76 (95% CI: 0.70-0.82), and 0.82 (95% CI: 0.77-0.87) when electrocardiographic variables (PWTF and QTc) were added. SNP did not improve prediction modelling. CONCLUSION: We demonstrated that a model combining clinical and electrocardiographic variables provided robust prediction of AF in our post-stroke population. Role of SNP in prediction of AF was limited.

12.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878026

RESUMEN

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Asunto(s)
Fosfatasa Ácida , Antígenos de Neoplasias , Receptores de Antígenos de Linfocitos T , Fosfatasa Ácida/metabolismo , Antígenos de Neoplasias/metabolismo , Epítopos , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Leucocitos Mononucleares , Neoplasias/inmunología , Péptidos , Receptores de Antígenos de Linfocitos T/metabolismo
14.
Curr Protoc ; 2(4): e403, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35384408

RESUMEN

The generation of T cells is a complex, carefully orchestrated process that occurs in the thymus. The ability to mimic T cell differentiation in vitro has opened up avenues to better understand different stages of thymopoiesis but has also enabled the in vitro production of mature T cells suitable for immunotherapy. Among existing protocols, the artificial thymic organoid (ATO) system has been shown to be the most efficient at producing mature conventional T cells. In this serum-free model, human or murine hematopoietic stem and progenitor cells (HSPCs) are combined with a murine stromal cell line expressing a Notch ligand in a 3D cell aggregate. In ATOs, although only simple medium changes are required throughout the cultures, HSPCs differentiate into T cells with kinetics and phenotypes similar to those of endogenous thymopoiesis. This article describes protocols for the generation of ATOs from human and murine HSPCs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expansion and preparation of MS5-hDLL4 or MS5-mDLL4 cells Basic Protocol 2: Isolation of human hematopoietic stem and progenitor cells (HSPCs; CD34+ cells) Support Protocol 1: Transduction of human HSPCs (CD34+ cells) Basic Protocol 3: Production of thymic progenitors and mature T cells from human HSPCs in artificial thymic organoids (ATOs) Support Protocol 2: Phenotype analysis of human ATO cells by flow cytometry Basic Protocol 4: Isolation of murine HSPCs (Lin- Sca1+ cKit+; LSK) and hematopoietic stem cells (LSK CD150+ CD48-) Basic Protocol 5: Production of thymic progenitors and mature T cells from murine HSPCs in ATOs Support Protocol 3: Phenotype analysis of murine ATO cells by flow cytometry Alternate Protocol: Generation of ATOs from single HSPCs.


Asunto(s)
Células Madre Hematopoyéticas , Organoides , Animales , Diferenciación Celular , Hematopoyesis , Humanos , Ratones , Linfocitos T
15.
Cell Stem Cell ; 29(4): 515-527.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35278370

RESUMEN

Unlimited generation of chimeric antigen receptor (CAR) T cells from human-induced pluripotent stem cells (iPSCs) is an attractive approach for "off-the-shelf" CAR T cell immunotherapy. Approaches to efficiently differentiate iPSCs into canonical αß T cell lineages, while maintaining CAR expression and functionality, however, have been challenging. We report that iPSCs reprogramed from CD62L+ naive and memory T cells followed by CD19-CAR engineering and 3D-organoid system differentiation confers products with conventional CD8αß-positive CAR T cell characteristics. Expanded iPSC CD19-CAR T cells showed comparable antigen-specific activation, degranulation, cytotoxicity, and cytokine secretion compared with conventional CD19-CAR T cells and maintained homogeneous expression of the TCR derived from the initial clone. iPSC CD19-CAR T cells also mediated potent antitumor activity in vivo, prolonging survival of mice with CD19+ human tumor xenografts. Our study establishes feasible methodologies to generate highly functional CAR T cells from iPSCs to support the development of "off-the-shelf" manufacturing strategies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Receptores Quiméricos de Antígenos , Animales , Diferenciación Celular , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Organoides/metabolismo , Receptores Quiméricos de Antígenos/metabolismo
16.
JAMA Netw Open ; 5(3): e222940, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297971

RESUMEN

Importance: Reports of cerebral venous thrombosis (CVT) after messenger RNA (mRNA)-based SARS-CoV-2 vaccination has caused safety concerns, but CVT is also known to occur after SARS-CoV-2 infection. Comparing the relative incidence of CVT after infection vs vaccination may provide a better perspective of this complication. Objective: To compare the incidence rates and clinical characteristics of CVT following either SARS-CoV-2 infection or mRNA-based SARS-CoV-2 vaccines. Design, Setting, and Participants: Between January 23, 2020, and August 3, 2021, this observational cohort study was conducted at all public acute hospitals in Singapore, where patients hospitalized with CVT within 6 weeks of SARS-CoV-2 infection or after mRNA-based SARS-CoV-2 vaccination (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) were identified. Diagnosis of SARS-CoV-2 infection was based on quantitative reverse transcription-polymerase chain reaction or positive serology. National SARS-CoV-2 infection data were obtained from the National Centre for Infectious Disease, Singapore, and vaccination data were obtained from the National Immunisation Registry, Singapore. Exposures: SARS-CoV-2 infection or mRNA-based SARS-CoV-2 vaccines. Main Outcomes and Measures: Clinical characteristics, crude incidence rate (IR), and incidence rate ratio (IRR) of CVT after SARS-CoV-2 infection and after mRNA SARS-CoV-2 vaccination. Results: Among 62 447 individuals diagnosed with SARS-CoV-2 infections included in this study, 58 989 (94.5%) were male; the median (range) age was 34 (0-102) years; 6 CVT cases were identified (all were male; median [range] age was 33.5 [27-40] years). Among 3 006 662 individuals who received at least 1 dose of mRNA-based SARS-CoV-2 vaccine, 1 626 623 (54.1%) were male; the median (range) age was 50 (12-121) years; 9 CVT cases were identified (7 male individuals [77.8%]; median [range] age: 60 [46-76] years). The crude IR of CVT after SARS-CoV-2 infections was 83.3 per 100 000 person-years (95% CI, 30.6-181.2 per 100 000 person-years) and 2.59 per 100 000 person-years (95% CI, 1.19-4.92 per 100 000 person-years) after mRNA-based SARS-CoV-2 vaccination. Six (66.7%) received BNT162b2 (Pfizer-BioNTech) vaccine and 3 (33.3%) received mRNA-1273 (Moderna) vaccine. The crude IRR of CVT hospitalizations with SARS-CoV-2 infection compared with those who received mRNA SARS-CoV-2 vaccination was 32.1 (95% CI, 9.40-101; P < .001). Conclusions and Relevance: The incidence rate of CVT after SARS-CoV-2 infection was significantly higher compared with after mRNA-based SARS-CoV-2 vaccination. CVT remained rare after mRNA-based SARS-CoV-2 vaccines, reinforcing its safety.


Asunto(s)
COVID-19 , Trombosis de la Vena , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Trombosis Intracraneal/etiología , Masculino , Persona de Mediana Edad , ARN Mensajero , SARS-CoV-2 , Singapur/epidemiología , Vacunación , Trombosis de la Vena/epidemiología , Trombosis de la Vena/etiología , Adulto Joven
17.
Leuk Lymphoma ; 63(6): 1407-1417, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35133221

RESUMEN

Patients with relapsed/refractory multiple myeloma (RRMM) need proven subsequent therapies after early-line lenalidomide treatment failure. The phase 2 MM-014 trial (NCT01946477) investigated pomalidomide, dexamethasone, and daratumumab after 1 to 2 prior treatment lines (62.5%, 1 prior line) in patients with RRMM and prior lenalidomide (75.0%, lenalidomide refractory). With a median follow-up of 28.4 months, overall response rate was 77.7% (52.7% achieved very good partial response or better) and median progression-free survival was 30.8 months. For patients with lenalidomide-refractory disease, these outcomes were 76.2%, 47.6%, and 23.7 months, respectively. No new safety signals were observed; 64.3% experienced grade 3/4 neutropenia. Health-related quality of life was preserved or trended toward improvement through 12 treatment cycles. Pomalidomide, dexamethasone, and daratumumab given immediately after early-line lenalidomide-based treatment continues to demonstrate safety and efficacy, supporting pomalidomide-dexamethasone as a foundation of combination therapy in RRMM and providing evidence that the immunomodulatory agent class delivers benefit after lenalidomide treatment failure.


Asunto(s)
Mieloma Múltiple , Neoplasias de Células Plasmáticas , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dexametasona , Humanos , Lenalidomida , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/etiología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Calidad de Vida , Talidomida/análogos & derivados
18.
Nat Commun ; 13(1): 121, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013215

RESUMEN

HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.


Asunto(s)
Fármacos Anti-VIH/farmacología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/terapia , VIH-1/efectos de los fármacos , Células Asesinas Naturales/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Viremia/terapia , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/inmunología , Médula Ósea/virología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Técnicas de Cocultivo , Femenino , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Células Asesinas Naturales/trasplante , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa C/genética , Proteína Quinasa C/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/virología , Carga Viral/efectos de los fármacos , Viremia/genética , Viremia/inmunología , Viremia/virología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
19.
Ann Hematol ; 101(3): 557-569, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34981142

RESUMEN

CC-90002 is an anti-CD47 antibody that inhibits CD47-SIRPα interaction and enables macrophage-mediated killing of tumor cells in hematological cancer cell lines. In this first clinical, phase 1, dose-escalation and -expansion study (CC-90002-AML-001; NCT02641002), we evaluated CC-90002 in patients with relapsed/refractory acute myeloid leukemia (AML) or high-risk myelodysplastic syndromes (MDS). CC-90002 was administered in escalating doses of 0.1-4.0 mg/kg, using a modified 3 + 3 design. Primary endpoints included dose-limiting toxicities (DLTs), non-tolerated dose (NTD), maximum tolerated dose (MTD), and recommended phase 2 dose. Secondary endpoints included preliminary efficacy, pharmacokinetics, and presence/frequency of anti-drug antibodies (ADAs). Between March 2016 and July 2018, 28 patients were enrolled (24 with AML and 4 with MDS) at 6 sites across the USA. As of July 18, 2018, all patients had discontinued, mainly due to death or progressive disease. The most common treatment-emergent adverse events were diarrhea (46.4%), thrombocytopenia (39.3%), febrile neutropenia (35.7%), and aspartate aminotransferase increase (35.7%). Four patients experienced DLTs (1 patient had grade 4 disseminated intravascular coagulation and grade 5 cerebral hemorrhage, 1 had grade 3 purpura, 1 had grade 4 congestive cardiac failure and grade 5 acute respiratory failure, and another had grade 5 sepsis). The NTD and MTD were not reached. No objective responses occurred. CC-90002 serum exposure was dose-dependent. ADAs were present across all doses, and the proportion of ADA-positive patients in cycle 1 increased over time. Despite no unexpected safety findings, the CC-90002-AML-001 study was discontinued in dose escalation for lack of monotherapy activity and evidence of ADAs. However, as other anti-CD47 agents in clinical trials are showing promising early results for AML and MDS, understanding preclinical and clinical differences between individual agents in this class will be of high importance.


Asunto(s)
Antineoplásicos Inmunológicos , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Recurrencia Local de Neoplasia , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CD47/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Macaca fascicularis , Dosis Máxima Tolerada , Ratones SCID , Síndromes Mielodisplásicos/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA