Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JAMA Cardiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958943

RESUMEN

Importance: There is no consensus regarding the best method for prediction of hypertensive disorders of pregnancy (HDP), including gestational hypertension and preeclampsia. Objective: To determine predictive ability in early pregnancy of large-scale proteomics for prediction of HDP. Design, Setting, and Participants: This was a nested case-control study, conducted in 2022 to 2023, using clinical data and plasma samples collected between 2010 and 2013 during the first trimester, with follow-up until pregnancy outcome. This multicenter observational study took place at 8 academic medical centers in the US. Nulliparous individuals during first-trimester clinical visits were included. Participants with HDP were selected as cases; controls were selected from those who delivered at or after 37 weeks without any HDP, preterm birth, or small-for-gestational-age infant. Age, self-reported race and ethnicity, body mass index, diabetes, health insurance, and fetal sex were available covariates. Exposures: Proteomics using an aptamer-based assay that included 6481 unique human proteins was performed on stored plasma. Covariates were used in predictive models. Main Outcomes and Measures: Prediction models were developed using the elastic net, and analyses were performed on a randomly partitioned training dataset comprising 80% of study participants, with the remaining 20% used as an independent testing dataset. Primary measure of predictive performance was area under the receiver operating characteristic curve (AUC). Results: This study included 753 HDP cases and 1097 controls with a mean (SD) age of 26.9 (5.5) years. Maternal race and ethnicity were 51 Asian (2.8%), 275 non-Hispanic Black (14.9%), 275 Hispanic (14.9%), 1161 non-Hispanic White (62.8% ), and 88 recorded as other (4.8%), which included those who did not identify according to these designations. The elastic net model, allowing for forced inclusion of prespecified covariates, was used to adjust protein-based models for clinical and demographic variables. Under this approach, no proteins were selected to augment the clinical and demographic covariates. The predictive performance of the resulting model was modest, with a training set AUC of 0.64 (95% CI, 0.61-0.67) and a test set AUC of 0.62 (95% CI, 0.56-0.68). Further adjustment for study site yielded only minimal changes in AUCs. Conclusions and Relevance: In this case-control study with detailed clinical data and stored plasma samples available in the first trimester, an aptamer-based proteomics panel did not meaningfully add to predictive utility over and above clinical and demographic factors that are routinely available.

2.
JMIR Res Protoc ; 13: e52647, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801762

RESUMEN

BACKGROUND: Single-lead, smartphone-based mobile electrocardiograms (ECGs) have the potential to provide a noninvasive, rapid, and cost-effective means of screening for atrial fibrillation (AFib) in outpatient settings. AFib has been associated with various comorbid diseases that prompt further investigation and screening methodologies for at-risk populations. A simple 30-second sinus rhythm strip from the KardiaMobile ECG (AliveCor) can provide an effective screen for cardiac rhythm abnormalities. OBJECTIVE: The aim of this study is to demonstrate the feasibility of performing Kardia-enabled ECG recordings routinely in outpatient settings in high-risk populations and its potential use in uncovering previous undiagnosed cases of AFib. Specific aim 1 is to determine the feasibility and accuracy of performing routine cardiac rhythm sampling in patients deemed at high risk for AFib. Specific aim 2 is to determine whether routine rhythm sampling in outpatient clinics with high-risk patients can be used cost-effectively in an outpatient clinic without increasing the time it takes for the patient to be seen by a physician. METHODS: Participants were recruited across 6 clinic sites across the University of Florida Health Network: University of Florida Health Nephrology, Sleep Center, Ophthalmology, Urology, Neurology, and Pre-Surgical. Participants, aged 18-99 years, who agreed to partake in the study were given a consent form and completed a questionnaire regarding their past medical history and risk factors for cardiovascular disease. Single-lead, 30-second ECGs were taken by the KardiaMobile ECG device. If patients are found to have newly diagnosed AFib, the attending physician is notified, and a 12-lead ECG or standard ECG equivalent will be ordered. RESULTS: As of March 1, 2024, a total of 2339 participants have been enrolled. Of the data collected thus far, the KardiaMobile rhythm strip reported 381 abnormal readings, which are pending analysis from a cardiologist. A total of 78 readings were labeled as possible AFib, 159 readings were labeled unclassified, and 49 were unreadable. Of note, the average age of participants was 61 (SD 10.25) years, and the average self-reported weight was 194 (SD 14.26) pounds. Additionally, 1572 (67.25%) participants report not regularly seeing a cardiologist. Regarding feasibility, the average length of enrolling a patient into the study was 3:30 (SD 0.5) minutes after informed consent was completed, and medical staff across clinic sites (n=25) reported 9 of 10 level of satisfaction with the impact of the screening on clinic flow. CONCLUSIONS: Preliminary data show promise regarding the feasibility of using KardiaMobile ECGs for the screening of AFib and prevention of cardiological disease in vulnerable outpatient populations. The use of a single-lead mobile ECG strip can serve as a low-cost, effective AFib screen for implementation across free clinics attempting to provide increased health care accessibility. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/52647.


Asunto(s)
Fibrilación Atrial , Electrocardiografía , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Fibrilación Atrial/diagnóstico , Electrocardiografía/métodos , Electrocardiografía/instrumentación , Estudios de Factibilidad , Pacientes Ambulatorios , Teléfono Inteligente , Estudios Observacionales como Asunto
3.
Eur Heart J ; 45(30): 2752-2767, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38757788

RESUMEN

BACKGROUND AND AIMS: Incident heart failure (HF) among individuals with chronic kidney disease (CKD) incurs hospitalizations that burden patients and health care systems. There are few preventative therapies, and the Pooled Cohort equations to Prevent Heart Failure (PCP-HF) perform poorly in the setting of CKD. New drug targets and better risk stratification are urgently needed. METHODS: In this analysis of incident HF, SomaScan V4.0 (4638 proteins) was analysed in 2906 participants of the Chronic Renal Insufficiency Cohort (CRIC) with validation in the Atherosclerosis Risk in Communities (ARIC) study. The primary outcome was 14-year incident HF (390 events); secondary outcomes included 4-year HF (183 events), HF with reduced ejection fraction (137 events), and HF with preserved ejection fraction (165 events). Mendelian randomization and Gene Ontology were applied to examine causality and pathways. The performance of novel multi-protein risk models was compared to the PCP-HF risk score. RESULTS: Over 200 proteins were associated with incident HF after adjustment for estimated glomerular filtration rate at P < 1 × 10-5. After adjustment for covariates including N-terminal pro-B-type natriuretic peptide, 17 proteins remained associated at P < 1 × 10-5. Mendelian randomization associations were found for six proteins, of which four are druggable targets: FCG2B, IGFBP3, CAH6, and ASGR1. For the primary outcome, the C-statistic (95% confidence interval [CI]) for the 48-protein model in CRIC was 0.790 (0.735, 0.844) vs. 0.703 (0.644, 0.762) for the PCP-HF model (P = .001). C-statistic (95% CI) for the protein model in ARIC was 0.747 (0.707, 0.787). CONCLUSIONS: Large-scale proteomics reveal novel circulating protein biomarkers and potential mediators of HF in CKD. Proteomic risk models improve upon the PCP-HF risk score in this population.


Asunto(s)
Insuficiencia Cardíaca , Proteómica , Insuficiencia Renal Crónica , Humanos , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/metabolismo , Masculino , Femenino , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/epidemiología , Persona de Mediana Edad , Medición de Riesgo/métodos , Incidencia , Anciano , Biomarcadores/metabolismo , Biomarcadores/sangre , Tasa de Filtración Glomerular/fisiología , Análisis de la Aleatorización Mendeliana
4.
PLoS One ; 19(4): e0299332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38652731

RESUMEN

Standard race adjustments for estimating glomerular filtration rate (GFR) and reference creatinine can yield a lower acute kidney injury (AKI) and chronic kidney disease (CKD) prevalence among African American patients than non-race adjusted estimates. We developed two race-agnostic computable phenotypes that assess kidney health among 139,152 subjects admitted to the University of Florida Health between 1/2012-8/2019 by removing the race modifier from the estimated GFR and estimated creatinine formula used by the race-adjusted algorithm (race-agnostic algorithm 1) and by utilizing 2021 CKD-EPI refit without race formula (race-agnostic algorithm 2) for calculations of the estimated GFR and estimated creatinine. We compared results using these algorithms to the race-adjusted algorithm in African American patients. Using clinical adjudication, we validated race-agnostic computable phenotypes developed for preadmission CKD and AKI presence on 300 cases. Race adjustment reclassified 2,113 (8%) to no CKD and 7,901 (29%) to a less severe CKD stage compared to race-agnostic algorithm 1 and reclassified 1,208 (5%) to no CKD and 4,606 (18%) to a less severe CKD stage compared to race-agnostic algorithm 2. Of 12,451 AKI encounters based on race-agnostic algorithm 1, race adjustment reclassified 591 to No AKI and 305 to a less severe AKI stage. Of 12,251 AKI encounters based on race-agnostic algorithm 2, race adjustment reclassified 382 to No AKI and 196 (1.6%) to a less severe AKI stage. The phenotyping algorithm based on refit without race formula performed well in identifying patients with CKD and AKI with a sensitivity of 100% (95% confidence interval [CI] 97%-100%) and 99% (95% CI 97%-100%) and a specificity of 88% (95% CI 82%-93%) and 98% (95% CI 93%-100%), respectively. Race-agnostic algorithms identified substantial proportions of additional patients with CKD and AKI compared to race-adjusted algorithm in African American patients. The phenotyping algorithm is promising in identifying patients with kidney disease and improving clinical decision-making.


Asunto(s)
Lesión Renal Aguda , Negro o Afroamericano , Tasa de Filtración Glomerular , Hospitalización , Insuficiencia Renal Crónica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Algoritmos , Creatinina/sangre , Riñón/fisiopatología , Fenotipo , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/diagnóstico
5.
JAMA Intern Med ; 184(4): 451-452, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372980
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...