Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 23(5): 101053, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32344377

RESUMEN

The axon initial segment (AIS) is the site of action potential initiation and serves as a cargo transport filter and diffusion barrier that helps maintain neuronal polarity. The AIS actin cytoskeleton comprises actin patches and periodic sub-membranous actin rings. We demonstrate that tropomyosin isoform Tpm3.1 co-localizes with actin patches and that the inhibition of Tpm3.1 led to a reduction in the density of actin patches. Furthermore, Tpm3.1 showed a periodic distribution similar to sub-membranous actin rings but Tpm3.1 was only partially congruent with sub-membranous actin rings. Nevertheless, the inhibition of Tpm3.1 affected the uniformity of the periodicity of actin rings. Furthermore, Tpm3.1 inhibition led to reduced accumulation of AIS structural and functional proteins, disruption in sorting somatodendritic and axonal proteins, and a reduction in firing frequency. These results show that Tpm3.1 is necessary for the structural and functional maintenance of the AIS.

2.
J Neurosci ; 36(19): 5299-313, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170127

RESUMEN

UNLABELLED: Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. SIGNIFICANCE STATEMENT: Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for regulating neuronal actin cytoskeleton that explains the specific organization and dynamics of actin in spines. The better we understand the regulation of the dendritic spine morphology, the better we understand what goes wrong in neurological diseases.


Asunto(s)
Actinas/metabolismo , Espinas Dendríticas/metabolismo , Potenciación a Largo Plazo , Neurogénesis , Procesamiento Proteico-Postraduccional , Citoesqueleto de Actina/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Espinas Dendríticas/fisiología , Femenino , Humanos , Masculino , Fosforilación , Ratas , Tirosina/metabolismo
3.
Dev Cell ; 33(6): 644-59, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26051541

RESUMEN

Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.


Asunto(s)
Espinas Dendríticas/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas de Neoplasias/fisiología , Neurogénesis/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Animales , Conducta Animal/fisiología , Cerebelo/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Modelos Neurológicos , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neurogénesis/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Distribución Tisular
4.
PLoS One ; 9(5): e97851, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24846136

RESUMEN

Prostatic acid phosphatase (PAP), the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG), but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP) in the brain by utilizing mice deficient in TMPAP (PAP-/- mice). Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiopatología , Membrana Celular/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas Tirosina Fosfatasas/deficiencia , Transmisión Sináptica/genética , Fosfatasa Ácida , Animales , Encéfalo/patología , Dopamina/biosíntesis , Glutamato Descarboxilasa/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Isoenzimas , Ventrículos Laterales/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Unión Proteica , Transporte de Proteínas , Proteínas Tirosina Fosfatasas/genética
5.
PLoS One ; 9(2): e89321, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586687

RESUMEN

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited neurodegenerative disease, manifesting with myoclonus, seizures and ataxia, caused by mutations in the cystatin B (CSTB) gene. With the aim of understanding the molecular basis of pathogenetic events in EPM1 we characterized gene expression changes in the cerebella of pre-symptomatic postnatal day 7 (P7) and symptomatic P30 cystatin B -deficient (Cstb(-/-) ) mice, a model for the disease, and in cultured Cstb(-/-) cerebellar granule cells using a pathway-based approach. Differentially expressed genes in P7 cerebella were connected to synaptic function and plasticity, and in cultured cerebellar granule cells, to cell cycle, cytoskeleton, and intracellular transport. In particular, the gene expression data pinpointed alterations in GABAergic pathway. Electrophysiological recordings from Cstb(-/-) cerebellar Purkinje cells revealed a shift of the balance towards decreased inhibition, yet the amount of inhibitory interneurons was not declined in young animals. Instead, we found diminished number of GABAergic terminals and reduced ligand binding to GABAA receptors in Cstb(-/-) cerebellum. These results suggest that alterations in GABAergic signaling could result in reduced inhibition in Cstb(-/-) cerebellum leading to the hyperexcitable phenotype of Cstb(-/-) mice. At P30, the microarray data revealed a marked upregulation of immune and defense response genes, compatible with the previously reported early glial activation that precedes neuronal degeneration. This further implies the role of early-onset neuroinflammation in the pathogenesis of EPM1.


Asunto(s)
Cerebelo/metabolismo , Cistatina B/genética , Regulación de la Expresión Génica , Epilepsias Mioclónicas Progresivas/genética , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Cerebelo/inmunología , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/metabolismo , Ligandos , Masculino , Ratones , Ratones Noqueados , Unión Proteica , Células de Purkinje/metabolismo , Receptores de GABA-A/metabolismo , Reproducibilidad de los Resultados , Potenciales Sinápticos , Factores de Tiempo
6.
J Neurosci ; 30(19): 6507-14, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20463214

RESUMEN

In the neonatal hippocampus, the activity of interneurons shapes early network bursts that are important for the establishment of neuronal connectivity. However, mechanisms controlling the firing of immature interneurons remain elusive. We now show that the spontaneous firing rate of CA3 stratum lucidum interneurons markedly decreases during early postnatal development because of changes in the properties of GluK1 (formerly known as GluR5) subunit-containing kainate receptors (KARs). In the neonate, activation of KARs by ambient glutamate exerts a tonic inhibition of the medium-duration afterhyperpolarization (mAHP) by a G-protein-dependent mechanism, permitting a high interneuronal firing rate. During development, the amplitude of the apamine-sensitive K+ currents responsible for the mAHP increases dramatically because of decoupling between KAR activation and mAHP modulation, leading to decreased interneuronal firing. The developmental shift in the KAR function and its consequences on interneuronal activity are likely to have a fundamental role in the maturation of the synchronous neuronal oscillations typical for adult hippocampal circuitry.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/fisiología , Interneuronas/fisiología , Potasio/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Unión al GTP/metabolismo , Ácido Glutámico/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Receptores de Ácido Kaínico/deficiencia , Receptores de Ácido Kaínico/genética
7.
Neuropharmacology ; 52(6): 1354-65, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17395219

RESUMEN

Kainate type of glutamate receptors (KARs) modulate synaptic transmission in a developmentally regulated manner at several synapses in the brain. Previous studies have shown that KARs depress glutamatergic transmission at CA3-CA1 synapses in the hippocampus and these receptors are tonically active during early postnatal development. Here we use the GluR5 subunit specific agonist ATPA to further characterize the role of KARs in the modulation of synaptic transmission and plasticity in area CA1 during the first two weeks of life. We find that the depressant effect of ATPA on evoked fEPSPs/EPSCs is smaller in the neonate (P3-P6) than in the juvenile (P14-P18) rat CA1, due to endogenous activity of KAR in the neonate. Further, in the neonate but not juvenile CA1, ATPA downregulates action-potential independent transmission (mEPSCs) and its effects are dependent on protein kinase C activity. ATPA-induced depression of fEPSPs in the neonate occludes the presynaptic component of long-term depression (LTD). In contrast, at P14-P18, ATPA prevents LTD indirectly via GABAergic mechanisms. These data show that GluR5 signaling mechanisms are developmentally regulated and suggest distinct functional role for KARs in the modulation of synaptic transmission and plasticity at different stages of development.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Glutamatos/fisiología , Hipocampo/efectos de los fármacos , Isoxazoles/farmacología , Plasticidad Neuronal/efectos de los fármacos , Propionatos/farmacología , Receptores de Ácido Kaínico/agonistas , Transmisión Sináptica/efectos de los fármacos , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Electrofisiología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Técnicas In Vitro , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos
8.
Neuropharmacology ; 52(1): 1-11, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16919682

RESUMEN

The study of long-term potentiation (LTP) has for many years been the centre of a raging debate as to whether the process is expressed by presynaptic or postsynaptic mechanisms. Here we present evidence that two forms of synaptic plasticity at CA3-CA1 synapses in the hippocampus are expressed by presynaptic changes. One form is short-term potentiation (STP) and the other a neonatal form of early-LTP (E-LTP). We review recent experimental data that suggests that this latter form of LTP involves an increase in the probability of neurotransmitter release (Pr). We describe how this is caused by the rapid down-regulation of a high affinity kainate receptor, which otherwise responds to ambient levels of l-glutamate by depressing Pr.


Asunto(s)
Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Transmisión Sináptica/fisiología
9.
Neuropsychopharmacology ; 32(4): 911-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16936706

RESUMEN

GABA(A) receptors mediate both fast phasic inhibitory postsynaptic potentials and slower tonic extrasynaptic inhibition. Hyperpolarizing phasic GABAergic inhibition requires the activity of neuron-specific chloride-extruding potassium-chloride cotransporter KCC2 in adult CNS. However, the possible role of KCC2 in tonic GABAergic inhibition and the associated behaviors is unknown. Here, we have examined the role of KCC2 in phasic vs tonic GABA inhibition by measuring the behavioral effects of pharmacological agents that presumably enhance phasic vs tonic inhibition in mice that retain 15-20% of normal KCC2 protein levels. These KCC2-deficient mice show decreased sensitivity to diazepam-induced sedation and motor impairment consistent with the reported role for KCC2 in fast hyperpolarizing inhibition. In contrast, the mice exhibit normal responses to low-dose alcohol-induced motor impairment, gaboxadol-induced sedation, and neurosteroid-induced hypnosis; behaviors thought to be associated with tonic GABAergic inhibition. Electrophysiological recordings show that the tonic conductance is not affected. The results suggest that KCC2 activity is more critical for behaviors dependent on phasic than tonic GABAergic inhibition.


Asunto(s)
Anticonvulsivantes/farmacología , Depresores del Sistema Nervioso Central/farmacología , Diazepam/farmacología , Etanol/farmacología , Pérdida de Tono Postural/fisiología , Isoxazoles/farmacología , Simportadores/deficiencia , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Conducta Animal/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Hipocampo/citología , Hipocampo/fisiología , Hipocampo/efectos de la radiación , Pérdida de Tono Postural/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos de la Destreza Motora/inducido químicamente , Trastornos de la Destreza Motora/tratamiento farmacológico , Neuronas/efectos de los fármacos , Cotransportadores de K Cl
10.
Neuron ; 50(3): 415-29, 2006 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-16675396

RESUMEN

Early in development, excitatory synapses transmit with low efficacy, one mechanism for which is a low probability of transmitter release (Pr). However, little is known about the developmental mechanisms that control activity-dependent maturation of the presynaptic release. Here, we show that during early development, transmission at CA3-CA1 synapses is regulated by a high-affinity, G protein-dependent kainate receptor (KAR), which is endogenously activated by ambient glutamate. By tonically depressing glutamate release, this mechanism sets the dynamic properties of neonatal inputs to favor transmission during high frequency bursts of activity, typical for developing neuronal networks. In response to induction of LTP, the tonic activation of KAR is rapidly down regulated, causing an increase in Pr and profoundly changing the dynamic properties of transmission. Early development of the glutamatergic connectivity thus involves an activity-dependent loss of presynaptic KAR function producing maturation in the mode of excitatory transmission from CA3 to CA1.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/crecimiento & desarrollo , Inhibición Neural/fisiología , Vías Nerviosas/crecimiento & desarrollo , Terminales Presinápticos/metabolismo , Receptores de Ácido Kaínico/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Inhibición Neural/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/ultraestructura , Ratas , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Ácido Kaínico/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
11.
J Neurosci ; 25(18): 4473-84, 2005 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-15872094

RESUMEN

Kainate receptors (KARs) are highly expressed throughout the neonatal brain, but their function during development is unclear. Here, we show that the maturation of the hippocampus is associated with a switch in the functional role of presynaptic KARs. In a developmental period restricted to the first postnatal week, endogenous L-glutamate tonically activates KARs at CA3 glutamatergic synapses to regulate release in an action potential-independent manner. At synapses onto pyramidal cells, KARs inhibit glutamate release via a G-protein and PKC-dependent mechanism. In contrast, at glutamatergic terminals onto CA3 interneurons, presynaptic KARs can facilitate release in a G-protein-independent mechanism. In both cell types, however, KAR activation strongly upregulates inhibitory transmission. We show that, through the interplay of these novel diverse mechanisms, KARs strongly regulate the characteristic synchronous network activity observed in the neonatal hippocampus. By virtue of this, KARs are likely to play a central role in the development of hippocampal synaptic circuits.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Receptores de Ácido Kaínico/fisiología , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Baclofeno/farmacología , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de la radiación , Furanos/farmacología , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Guanosina Trifosfato/farmacología , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Interneuronas/efectos de la radiación , Isoquinolinas/farmacología , Isoxazoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Inhibición Neural/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Picrotoxina/farmacología , Probabilidad , Receptores de Ácido Kaínico/deficiencia
12.
J Clin Invest ; 112(5): 707-16, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12952919

RESUMEN

Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line-derived neurotrophic factor family receptor alpha2 (GFRalpha2) for development and target innervation. Why GFRalpha2-deficient (Gfra2-/-) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRalpha2 protein was expressed in most substance P-containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2-/- mice, density of substance P-containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2-/- mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRalpha2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.


Asunto(s)
Motilidad Gastrointestinal , Trastornos del Crecimiento/etiología , Intestinos/inervación , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Animales , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/genética , Neurturina , Trastornos Nutricionales/etiología , Páncreas/inervación , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas c-ret , ARN Mensajero/análisis , Proteínas Tirosina Quinasas Receptoras/análisis , Saliva/metabolismo , Sustancia P/análisis , Sustancia P/fisiología , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...